I. Descripción del método de cálculo utilizado (MEFFCOM2). II. Cálculo de garantía por posición según Tipo de Cuenta. Anexo 1: Modelo de Black de valoración de opciones. Cálculo de la delta. Anexo 2: Modelo binomial de valoración de opciones. Cálculo...
Numero: C-DF-20/2011 Grupo de contratos: Derivados Financieros Fecha: 19 de octubre de 2010 Fecha entrada en vigor: 24 de enero de 2011 Sustituye a: Circular 03/06 | |
Asunto | Procedimiento para el cálculo de las Garantías por posición. |
Resumen | Se detalla el cálculo de las garantías por posición. |
Esta circular se publica de acuerdo con lo establecido en el Artículo 22 del Reglamento. La presente circular se compone de dos apartados y dos anexos:
I. Descripción del método de cálculo utilizado (MEFFCOM2).
II. Cálculo de garantía por posición según Tipo de Cuenta.
Anexo 1: Modelo de Black de valoración de opciones. Cálculo de la delta.
Anexo 2: Modelo binomial de valoración de opciones. Cálculo de la delta.
Anexo 3: Modelo de Black y Xxxxxxx de valoración de opciones. Cálculo de la delta.
La Circular incluye un ejemplo, que no forma parte del texto normativo de la Circular, pero que facilita la comprensión de la misma.
I. DESCRIPCIÓN DEL MÉTODO DE CÁLCULO UTILIZADO (MEFFCOM2).
Pasos seguidos en el cálculo de la garantía por posición, para posiciones compensadas en opciones-futuros, según el método denominado MEFFCOM2:
1.- Cálculo de la volatilidad de las opciones.
2.- Construcción de las matrices de garantías (precios teóricos y deltas). 3.- Aplicación de las matrices de garantías a las posiciones abiertas.
4.- Adición de garantías por Time Spreads.
5.- Compensación de garantías entre distintos Subyacentes.
6.- Determinación de la Garantía por Posición a nivel de Cuenta.
En este documento, los términos Contrato, Subyacente, Delta, Grupo de Compensación, Spread, y Cuenta se utilizan en el sentido siguiente:
Contrato: Se considera como Contrato a un futuro para un vencimiento determinado y una opción con su tipo (call o put), precio de ejercicio y vencimiento. Así se consideran contratos por ejemplo el futuro FMIXZ0, o la opción CIBX 8200Z0.
Subyacente: Un contrato de futuros para las opciones sobre futuros, o el propio contado para el resto de contratos.
Delta: Posición equivalente de un Contrato en unidades de Futuros.
Grupo de Compensación: Es el constituido por aquellos Contratos (futuros y opciones) relacionados con un mismo Subyacente.
Spread: Posiciones (deltas) compensadas entre distintos vencimientos (“Time Spreads”) o distintos Subyacentes.
Cuenta: Unidad mínima para el cálculo de Garantías..
1.- Cálculo de la volatilidad de las opciones.
En las series “at the money” de cada vencimiento se considera la volatilidad observada durante la sesión xx xxxxxxx para los distintos contratos. En el caso de no existir operaciones en algún vencimiento para dicha serie, se pedirá cotización de la misma a los Creadores xx Xxxxxxx.
En las demás series se tomará la curva lineal de volatilidad determinada a partir de las operaciones xx xxxxxxx o, en su defecto, a partir de la mediana de las curvas de volatilidad proporcionadas por los Creadores xx Xxxxxxx. Dicha curva se revisará como mínimo de semana en semana o, de forma extraordinaria, si las circunstancias xx xxxxxxx así lo requieren.
2.- Construcción de las matrices de garantías: precios teóricos y deltas.
Una vez obtenida la curva lineal de volatilidad para cada vencimiento, se construye una matriz de precios teóricos y una matriz de deltas por cada Grupo de Compensación. Los pasos que se siguen son los siguientes:
a) Determinación de los precios hipotéticos del subyacente.
b) Determinación de la volatilidad reducida y aumentada (Volatilidad Tomo y Volatilidad Doy).
c) Cálculo de las matrices de precios teóricos.
d) Cálculo de las matrices de deltas.
a) Determinación de los precios hipotéticos del subyacente.
Los precios hipotéticos que puede alcanzar el subyacente a partir del precio de cierre se determinan en función de la Fluctuación Total a Analizar y el Número de Columnas que se desea que tengan las matrices. Estos parámetros se especifican, a nivel de Grupo de Compensación, en la Circular de “Parámetros a utilizar para el cálculo de la Garantía por posición”, y también se pueden diferenciar según el vencimiento.
Así, el cálculo de los precios hipotéticos del subyacente se realiza de la siguiente manera
Precio del subyacente 1 = Precio de Cierre + 1 * Fluctuación Total / (NºColumnas-1) Precio del subyacente -1 = Precio de Cierre - 1 * Fluctuación Total / (NºColumnas-1) Precio del subyacente 2 = Precio de Cierre + 2 * Fluctuación Total / (NºColumnas-1) Precio del subyacente -2 = Precio de Cierre - 2 * Fluctuación Total / (NºColumnas-1)
y así sucesivamente hasta completar el número de columnas deseado.
Para considerar la posibilidad de una gran posición en un subyacente, se añadirán nuevos precios hipotéticos en función de los porcentajes de incremento de la garantía, “Pi”,
establecidos en la Circular de “Garantías adicionales para grandes posiciones en futuros y opciones”:
Precio del subyacente P1 = Precio de Cierre + Fluctuación Total / 2 x (1+%P1) Precio del subyacente -P1 = Precio de Cierre - Fluctuación Total / 2 x (1+%P1) Precio del subyacente P2 = Precio de Cierre + Fluctuación Total / 2 x (1+%P2) Precio del subyacente -P2 = Precio de Cierre - Fluctuación Total / 2 x (1+%P2) Precio del subyacente P3 = Precio de Cierre + Fluctuación Total / 2 x (1+%P3) Precio del subyacente -P3 = Precio de Cierre - Fluctuación Total / 2 x (1+%P3)
y así sucesivamente hasta considerar todos los porcentajes Pi establecidos en la circular.
Los importes que se suman o restan al Precio de Cierre para constituir los precios hipotéticos están redondeados al número de decimales con que cotiza el Subyacente.
Por ejemplo, dada una fluctuación total de 1200 puntos (600 puntos al alza y 600 puntos a la baja), 11 columnas, y un precio de cierre del subyacente de 7.996,0, los precios hipotéticos son los siguientes:
Precio del subyacente 1 = 7.996,0 + 1 x 1200 / 10 = 8.116,0
Precio del subyacente -1 = 7.996,0 - 1 x 1200 / 10 = 7.876,0
Precio del subyacente 2 = 7.996,0 + 2 x 1200 / 10 = 8.236,0
Precio del subyacente -2 = 7.996,0 - 2 x 1200 / 10 = 7.756,0 Completando todas las columnas de la matriz:
PS5 PS4 PS3 PS2 PS1 PC PS-1 PS-2 PS-3 PS-4 PS-5 8.596,0 8.476,0 8.356,0 8.236,0 8.116,0 7.996,0 7.876,0 7.756,0 7.636,0 7.516,0 7.396,0
Si la fluctuación total se expresa en porcentaje con respecto al Precio de Cierre, para una fluctuación de ±15% y un Precio de Cierre igual a 8,89, por ejemplo, la fluctuación total es igual a 2,667 (2 x 15% x 8,89), y para 11 columnas, los precios hipotéticos serán los siguientes:
Precio del subyacente 1 = 8,89 + 1 x 2,667 / 10 = 9,16
Precio del subyacente -1 = 8,89 - 1 x 2,667 / 10 = 8,62
Precio del subyacente 2 = 8,89+ 2 x 2,667 / 10 = 9,42
Precio del subyacente -2 = 8,89 - 2 x 2,667 / 10 = 8,36 Completando todas las columnas de la matriz:
PS5 PS4 PS3 PS2 PS1 PC PS-1 PS-2 PS-3 PS-4 PS-5
10,22 9,96 9,69 9,42 9,16 8,89 8,62 8,36 8,09 7,82 7,56
Para considerar grandes posiciones, si los porcentajes de incremento del intervalo de garantía son por ejemplo 22%, 41% y 58%, se añaden los siguientes precios hipotéticos:
Precio del subyacente P1 = 7.996,0 + 1200 / 2 x (1+22%) = 8.728,0
Precio del subyacente -P1 = 7.996,0 - 1200 / 2 x (1+22%) = 7.264,0
Precio del subyacente P2 = 7.996,0 + 1200 / 2 x (1+41%) = 8.842,0
Precio del subyacente -P2 = 7.996,0 - 1200 / 2 x (1+41%) = 7.150,0
Precio del subyacente P3 = 7.996,0 + 1200 / 2 x (1+58%) = 8.944,0
Precio del subyacente –P3 = 7.996,0 - 1200 / 2 x (1+58%) = 7.048,0
Se añaden nuevas columnas a la derecha de la matriz anterior:
PSP1 PS-P1 PSP2 PS-P2 PSP3 PS-P3 8.728,0 7.264,0 8.842,0 7.150,0 8.944,0 7.048,0
Para el subyacente con fluctuación porcentual respecto el precio de cierre: Precio del subyacente P1 = 8,89 + 2,667 / 2 x (1+22%) = 10,52
Precio del subyacente -P1 = 8,89 - 2,667 / 2 x (1+22%) = 7,26
Precio del subyacente P2 = 8,89 + 2,667 / 2 x (1+41%) = 10,77
Precio del subyacente -P2 = 8,89 - 2,667 / 2 x (1+41%) = 7,01
Precio del subyacente P3 = 8,89 + 2,667 / 2 x (1+58%) = 11,00
Precio del subyacente -P3 = 8,89 - 2,667 / 2 x (1+58%) = 6,78
PSP1 PS-P1 PSP2 PS-P2 PSP3 PS-P3 10,52 7,26 10,77 7,01 11,00 6,78
b) Determinación de la volatilidad reducida y aumentada (Volatilidad Tomo y Volatilidad Doy).
Para realizar este cálculo, se especifica, en la Circular de “Parámetros a utilizar para el cálculo de la Garantía por posición”, el porcentaje de incremento y disminución de la volatilidad para cada Grupo de Compensación y con qué algoritmo se debe aplicar. La volatilidad reducida (volatilidad Tomo) y la volatilidad aumentada (volatilidad Doy) resultantes por cada contrato de opción, se utilizarán en el cálculo de las matrices de precios teóricos y deltas.
A cada volatilidad implícita se le aplica uno de los dos algoritmos siguientes, donde
V.I.C es la Volatilidad Implícita del Contrato:
b.1) Porcentaje de incremento y disminución multiplicado por la volatilidad:
Volatilidad Tomo (reducida) = V.I.C. - (V.I.C * Porcentaje Disminución)
Volatilidad Doy (aumentada) = V.I.C. + (V.I.C * Porcentaje Incremento) b.2) Porcentaje de incremento y disminución sumado a la volatilidad:
Volatilidad Tomo (reducida) = V.I.C. - Porcentaje Disminución
Volatilidad Doy (aumentada) = V.I.C. + Porcentaje Incremento
Por ejemplo, si el Porcentaje Disminución = Porcentaje Incremento = 10%, para una volatilidad de 27,33%:
Si se multiplica por la volatilidad (b.1)
Volatilidad Tomo = 27,33% - (27,33 * 10%) = 24,597%
Volatilidad Doy = 27,33% + (27,33% * 10%) = 30,063% Si se suma la volatilidad (b.2):
Volatilidad Tomo = 27,33% -10% = 17,33%
Volatilidad Doy = 27,33% + 10% = 37,33%
c) Cálculo de las matrices de precios teóricos.
Se denomina precio teórico al valor teórico de un contrato para una determinada combinación de precio hipotético del Subyacente y volatilidad (este último parámetro sólo afecta a las opciones).
Futuros: El subyacente es el mismo Futuro. Para cada columna, se calcula el precio teórico como la diferencia entre el precio hipotético correspondiente a dicha columna menos el precio de cierre del futuro:
Precio Teórico = PSn - PC Donde: PSn : Precio hipotético del Subyacente (Futuro)
PC : Precio de cierre del Subyacente (Futuro)
Como ilustración, para el primer ejemplo del apartado I.2.a), que correspondería a un contrato de futuros con precio de cierre 7.996,0 y fluctuación total a analizar fija de 1.200, los precios teóricos (PT) para cada precio PS serían:
PS5 PS4 PS3 PS2 PS1 PC PS-1 PS-2 PS-3 PS-4 PS-5
PT 600,0 480,0 360,0 240,0 120,0 0,0 -120,0 -240,0 -360,0 -480,0 -600,0
Y a la derecha, tendríamos los precios teóricos a incorporar en el caso de grandes posiciones:
PSP1 PS-P1 PSP2 PS-P2 PSP3 PS-P3 732,0 -732,0 846,0 -846,0 948,0 -948,0
Opciones: Se aplica la fórmula de valoración de opciones (ver Anexos 1, 2 y 3) a cada combinación de volatilidad y precio hipotético del subyacente. Para ello, es necesario conocer el Modelo de Valoración a aplicar, de acuerdo con las especificaciones de la Circular “Parámetros a utilizar para el cálculo de la Garantía por posición”, así como el Tipo de Interés y el Tiempo a Vencimiento del contrato de opciones, y los Dividendos estimados futuros para las acciones.
Se obtiene así una fila de precios teóricos Tomo, calculada con la Volatilidad Xxxx (T) y otra de precios teóricos Doy, calculada con la Volatilidad Doy (D). En el caso de los futuros, las dos filas son iguales.
Por tanto, por cada Contrato con posición abierta se obtiene una fila con un número de valores igual al doble del número de columnas especificadas para el Grupo de Compensación.
Por ejemplo, tomando los 11 precios del segundo ejemplo del apartado I.2.a) y las volatilidades tomo y doy obtenidas en I.2.b.1). Para una opción americana de compra con precio de ejercicio igual a 9, que vence en 172 días, con dividendos estimados de 0,0704 euros a 32 días y 0,0775 euros a 124 días, y a un tipo de interés del 1,924%. Aplicando la formula de valoración del Anexo 2 (modelo binomial) se obtendrían los siguientes precios teóricos:
PT PS5 PS4 PS3 PS2 PS1 PC PS-1 PS-2 PS-3 PS-4 PS-5 T 1,40 1,20 1,00 0,82 0,66 0,52 0,39 0,29 0,21 0,14 0,09
D 1,51 1,32 1,12 0,95 0,79 0,65 0,52 0,41 0,31 0,23 0,17
Contemplando la posibilidad de una gran posición, con porcentajes de incremento del 22%, 41% y 58%, se añadirían los siguientes precios teóricos:
PT PSP1 PS-P1 PSP2 PS-P2 PSP3 PS-P3
T 1,65 | 0,06 | 1,87 | 0,03 | 2,07 | 0,02 |
D 1,75 | 0,11 | 1,95 | 0,08 | 2,15 | 0,05 |
d) Cálculo de las matrices de deltas.
Se procede a calcular una matriz de deltas con el objeto de determinar el número de posiciones de signo opuesto en distintos vencimientos de un mismo Grupo de Compensación.
Futuros: No se calcula. Para cada columna del subyacente, la delta es un parámetro determinado que siempre es igual a 1.
Opciones: Se aplica la fórmula de la delta (ver Anexos 1, 2 y 3) en función de lo que se especifica en la Circular de “Parámetros a utilizar para el cálculo de la Garantía por posición” para cada Grupo de Compensación. Obtenemos así una fila de deltas Tomo y una fila de deltas Doy.
El número de decimales utilizado es siempre 2.
Para la opción de compra que se ha puesto como ejemplo en el apartado I.2.c), evaluada a los mismos parámetros y de acuerdo con el Anexo 2, las deltas serían:
Deltas PS5 PS4 PS3 PS2 PS1 PC PS-1 PS-2 PS-3 PS-4 PS-5 T 0,80 0,76 0,70 0,64 0,57 0,50 0,42 0,35 0,28 0,21 0,15
D 0,77 0,72 0,68 0,62 0,57 0,51 0,45 0,39 0,33 0,27 0,22
Contemplando la posibilidad de una gran posición, con porcentajes de incremento del 22%, 41% y 58%, se añadirían las siguientes deltas:
Deltas PSP1 PS-P1 PSP2 PS-P2 PSP3 PS-P3 T 0,86 0,10 0,89 0,07 0,91 0,05
D 0,81 0,16 0,84 0,12 0,87 0,09
3.- Aplicación de las matrices de garantías a las posiciones abiertas.
Una vez construidas las matrices de garantías de precios teóricos y deltas para futuros y opciones, se les aplican las posiciones abiertas de la Cuenta correspondiente. Para ello se procede de la siguiente manera:
a) Valoración de la posición abierta en cada Grupo de Compensación.
b) Determinación de las deltas en cada vencimiento del Grupo de Compensación.
a) Valoración de la posición abierta en cada Grupo de Compensación.
La posición abierta en el Grupo de Compensación se valora para cada combinación de precio y volatilidad, multiplicándose la posición abierta en cada Contrato (número de contratos) por los precios teóricos, por el Multiplicador del Contrato (definido en la Circular de “Parámetros a utilizar para el cálculo de la Garantía por posición”) y por -1” si la posición es compradora, y “1” si es vendedora.
Los importes resultantes con signo positivo suponen un importe de Garantía y por el contrario los importes negativos suponen una disminución de Garantía.
Así, el algoritmo utilizado para valorar la posición abierta es:
Xxxxx X.Xxxxxxx compradora = Nº contratos * { Fila P.Teóricos Tomo, Fila P.Teóricos Doy, P.Teóricos grandes posiciones} * Multiplicador*-1
Valor P.Abierta vendedora = Nº contratos * { Fila P.Teóricos Tomo, Fila P.Teóricos Doy, P.Teóricos grandes posiciones } * Multiplicador* 1
Se suman columna a columna los valores calculados para los Contratos de un mismo Grupo de Compensación, compensándose totalmente los valores positivos y negativos, independientemente de si pertenecen al mismo o a distintos vencimientos. A la fila suma resultante la denominamos Garantías Posición Neta.
Por ejemplo, supongamos una posición abierta de 300 contratos comprados en la opción de compra mencionada en los apartados anteriores, más una posición en:
* 10 contratos comprados en una opción de venta que pertenece al mismo Grupo, con los siguientes precios teóricos:
PT | PS5 | PS4 | PS3 | PS2 | PS1 | PC | PS-1 | PS-2 | PS-3 | PS-4 | PS-5 | PSP1 | PS-P1 | … |
T | 0,05 | 0,07 | 0,09 | 0,11 | 0,14 | 0,18 | 0,22 | 0,27 | 0,34 | 0,41 | 0,50 | 0,04 | 0,61 | … |
D | 0,12 | 0,15 | 0,18 | 0,21 | 0,25 | 0,29 | 0,34 | 0,40 | 0,48 | 0,55 | 0,65 | 0,10 | 0,76 | … |
* 3 contratos vendidos en un futuro que pertenece al mismo Grupo. Los precios teóricos son:
PT | PS5 | PS4 | PS3 | PS2 | PS1 | PC | PS-1 | PS-2 | PS-3 | PS-4 | PS-5 | PSP1 | PS-P1 | … |
T | 1,33 | 1,06 | 0,80 | 0,53 | 0,27 | 0,00 | -0,27 | -0,53 | -0,80 | -1,06 | -1,33 | 1,62 | -1,62 | … |
D | 1,33 | 1,06 | 0,80 | 0,53 | 0,27 | 0,00 | -0,27 | -0,53 | -0,80 | -1,06 | -1,33 | 1,62 | -1,62 | … |
Si el multiplicador es igual a 100, el valor de la posición abierta es:
300 x {1,40 … 0,09 1,51… 0,17 1,65 1,75 0,06 0,11…} x 100 x -1
10 x { 0,05 … 0,50 0,12 … 0,65 0,04 0,10 0,61 0,76… } x 100 x -1
3 x {1,33 … -1,33 1,33 … -1,33 1,62 1,62 -1,62 -1,62…} x 100 x 1
Sumando columna a columna se obtiene la fila Garantía Posición Neta. Se observa que en las columnas 1 y 12, se compensan resultados positivos del futuro con los negativos de las dos opciones compradas:
1 | … | 11 | 12 | … | 22 | 23 | 24 | 25 | 26 | … |
-42.000 | … | -2700 | -45.300 | … | -5.100 | -49.500 | -52.500 | -1.800 | -3.300 | … |
-50 | … | -500 | -120 | … | -650 | -40 | -100 | -610 | -760 | … |
399 | … | -399 | 399 | … | -399 | 486 | 486 | -486 | -486 | … |
-41.651 | … | -3.599 | -45.021 | … | -6.149 | -49.054 | -52.114 | -2.896 | -4.546 | … |
Columna:
Opción de compra
Opción de venta Futuro
Garantías Posición Neta
Donde:
Columnas 1 a 11: escenarios de la fila de Precios Teóricos Tomo Columnas 12 a 22: escenarios de la fila de Precios Teóricos Doy
Columnas 23 en adelante: escenarios de aplicación sólo en el caso de grandes posiciones. Siguen la secuencia: P1Tomo, P1Doy, -P1Tomo, -P1 Doy, P2Tomo, P2Doy, -P2Tomo, -P2Doy, y así sucesivamente.
b) Determinación de las deltas por cada vencimiento del Grupo de Compensación.
Dado que la correlación entre distintos vencimientos no es perfecta, la compensación no puede ser total. Por tanto, hay que determinar si en el apartado anterior I.3.a) se han compensado posiciones correspondientes a vencimientos distintos, a fin de poder realizar un ajuste imputando una garantía adicional.
Para obtener la posición neta en cada vencimiento, se multiplica la posición abierta en cada Contrato (número de contratos) por un parámetro igual a “1” si la posición es compradora y “-1” si es vendedora, por el Multiplicador del Contrato, definido en la Circular de “Parámetros a utilizar para el cálculo de la Garantía por posición”, y por las deltas: en primer lugar por la fila de deltas Tomo de dicho contrato, a continuación por la fila de deltas Doy y, por último, las deltas para grandes posiciones:
Delta P.Abierta compradora = N° de contratos * 1* Multiplicador* { Fila deltas Tomo, Fila deltas Doy, Deltas grandes posiciones}
Delta P.Abierta vendedora = N° de contratos * -1* Multiplicador* { Fila deltas Tomo, Fila deltas Doy, Deltas grandes posiciones }
Se suman por columnas las deltas calculadas para cada vencimiento del Grupo de Compensación, obteniéndose una fila de deltas por vencimiento.
Para ilustrarlo, con el ejemplo anterior. Las deltas de la opción comprada se han indicado en el apartado I.2.d). Para los otros dos contratos que pertenecen al mismo grupo, las deltas son:
* Opción de venta:
Deltas | PS5 | PS4 | PS3 | PS2 | PS1 | PC | PS-1 | PS-2 | PS-3 | PS-4 | PS-5 | PSP1 | PS-P1 | … |
T | -0,05 | -0,1 | -0,08 | -0,1 | -0,12 | -0,14 | -0,18 | -0,21 | -0,26 | -0,31 | -0,36 | -0,04 | -0,42 | … |
D | -0,08 | -0,1 | -0,11 | -0,13 | -0,15 | -0,18 | -0,21 | -0,24 | -0,28 | -0,32 | -0,36 | -0,07 | -0,42 | … |
* Futuro: todas las deltas son igual a 1.
Si el multiplicador es igual a 100, la delta de la posición es:
300 x 1 x 100 x { 0,80 … 0,15 0,77 … 0,22 0,86 0,81 0,10 0,16…}
10 x 1 x 100 x {-0,05 … -0,36 -0,08 … -0,36 -0,04 -0,07 -0,42 -0,42…}
3 x -1 x 100 x { 1 … 1 1 … 1 1 1 1 1 …}
Si suponemos que el futuro corresponde al vencimiento 1, la opción de compra al vencimiento 2 y la opción de venta al vencimiento 3 (siendo el vencimiento 1 el más cercano), las deltas por vencimiento son:
Columna: 1 … 11 12 … 22 23 24 25 00 …
-000 … | -000 | -000 … -300 | -300 | -300 | -300 | -300 |
24.000 … | 4.500 | 23.100 … 6.600 | 25.800 | 24.300 | 3.000 | 4.800 |
-50 … | -360 | -80 … -360 | -40 | -70 | -420 | -420 |
Vencimiento 1 …
Vencimiento 2 …
Vencimiento 3 …
4.- Adición de garantías por Time Spreads.
Los pasos a realizar son los siguientes:
a) Selección de los vencimientos a compensar
b) Obtención del número de spreads
c) Obtención de la delta no consumida en spreads
d) Repetición del cálculo de los vencimientos a compensar hasta que no existan time- spreads
e) Obtención Garantía por Time-Spread
f) Obtención de la “Garantía Grupo”
a) Selección de los vencimientos a compensar.
A partir de las filas de deltas por vencimiento, se procederá columna a columna a computar las compensaciones (time spreads) entre aquellos vencimientos que presenten posiciones (deltas) con signo contrario, y posteriormente se calculará el importe de garantía por time spreads.
Se dará prioridad a la pareja de vencimientos que presenten fechas de vencimiento más cercanas entre sí, ya que son los que están más correlacionados, y empezando por la fecha de vencimiento más lejana.
Así, por ejemplo, si hay cuatro Vencimientos con distintas fechas de vencimiento, el orden será:
4ª/3ª, 3ª/2ª, 2ª/1ª, 4ª/2ª, 3ª/1ª, 4ª/1ª
b) Obtención del número de spreads.
El número de spreads por cada par de deltas con signo contrario se determinará de la siguiente forma:
Nº de spreads = Mínimo valor absoluto {delta Vencimiento,A ; delta Vencimiento B }
c) Obtención de la delta no consumida en spreads.
A continuación, para cada vencimiento se calculará la delta no consumida en spreads.
- Si la delta inicial es positiva:
Delta no consumida en spreads = Delta inicial – Nº de spreads
- Si la delta inicial es negativa:
Delta no consumida en spreads = Delta inicial + Nº de spreads
d) Repetición del cálculo de los vencimientos a compensar hasta que no existan time-spreads compensables.
A continuación y siempre que queden deltas compensables, se procede con la siguiente combinación de vencimientos a compensar y se repite este proceso hasta que no exista ninguna combinación de vencimientos a compensar.
Volviendo al ejemplo anterior, primero se compensarían el vencimiento 3 con el 2, y luego la posición que quede sin compensar del vencimiento 2 se compensaría con el 1. Entre los vencimientos 1 y 3, debido a que sus respectivas deltas presentan el mismo signo en todas las columnas, no hay spreads:
PASO 1: Spreads entre los vencimientos 3 y 2
Columna: 1 … 11 12 … 22 23 24 25 26 …
-50 | … | -360 | -80 | … | -360 | -40 | -70 | -420 | -420 |
24.000 | … | 4.500 | 23.100 | … | 6.600 | 25.800 | 24.300 | 3.000 | 4.800 |
50 | … | 360 | 80 | … | 360 | 40 | 70 | 420 | 420 |
Vencimiento 3 …
Vencimiento 2 …
Nº spreads …
PASO 2: Spreads
entre los vencimientos 2 y 1Columna:
Vencimiento 2 (no compensado en paso 1)
Vencimiento 1
Nº spreads
1 … 11 12 … 22 23 24 25 26 …
23.950 … 4.140 23.020 … 6.240 25.760 24.230 2.580 4.380 …
-300 … | -300 | -300 … -300 | -300 | -300 | -300 | -300 |
300 … | 300 | 300 … 300 | 300 | 300 | 300 | 300 |
…
…
e) Obtención Garantía por Time-Spread.
A continuación, se convierte cada número de spreads a unidades monetarias, multiplicándolo por la garantía por spread que se especifique en la Circular de “Parámetros a utilizar para el cálculo de la Garantía por posición”.
La garantía por spread puede ser fija, especificándose un importe en euros por cada spread, o variable, función de la diferencia entre los precios de los futuros
correspondientes a cada uno de los dos vencimientos que se compensan, especificándose un valor mínimo y un factor.
La determinación del depósito por spread variable se realiza de acuerdo con la siguiente fórmula:
Donde:
Máx. (VMS, Valor Absoluto(PC1 - PC2)) * Factor
VMS = Valor mínimo del spread, parámetro que se especifica en la Circular mencionada anteriormente.
PC1 = Precio de cierre del primer futuro según el orden definido en el apartado a). PC2 = Precio de cierre del otro futuro.
Factor = Parámetro, normalmente superior a uno, que se especifica en la Circular mencionada anteriormente.
Se suman las filas de garantías por spreads columna a columna, y la fila resultante, Garantías por Time Spreads, se suma a la fila Garantías Posición Neta obtenida en el apartado I.3.a). Por tanto, la fila resultante, que denominaremos Total Garantías, está ajustada o corregida por la falta de correlación perfecta entre distintos vencimientos del mismo Grupo.
Continuando con el ejemplo, supongamos que para el Grupo al que pertenecen los contratos que lo ilustran, la garantía por spread es variable, y:
PC1 = 8,86, PC2 = 8,82 , PC3= 8,79 , VMS = 0,20, Factor = 1,2
Por tanto:
Garantía por spread vencimientos 2 y 3 = Máx (0,20, Abs(8,82 - 8,79)) * 1,2 = 0,24 euros
Garantía por spread vencimientos 1 y 2 = Máx (0,20, Abs(8,86 - 8,82)) * 1,2 = 0,24 euros
Multiplicando los spreads por su correspondiente garantía, y sumando columna a columna se obtendría el importe de Garantías por time spreads:
1 | … | 11 | 12 | … | 22 | 23 | 24 | 25 | 26 | … |
12 | … | 86,4 | 19,2 | … | 86,4 | 9,6 | 16,8 | 100,8 | 100,8 | … |
72 | … | 72 | 72 | … | 72 | 72 | 72 | 72 | 72 | … |
Columna:
Gar. spreads vto. 2 y 3
Gar. spreads vto. 1 y 2
time spreads | 84 … 158,40 | 91,20 … 158,40 | 81,60 | 88,80 | 172,80 | 172,80 |
Garantías por …
Se suma la fila de Garantías por time spreads a la fila Garantías Posición Neta del Grupo de Compensación y se obtiene la fila Total Garantías:
Columna: 1 … 11 12 … 22 23 24 25 26 …
Garantías Posición
Neta
-41.651 … -3.599 -45.021 … -6.149 -49.054 -52.114 -2.896 -4.546 …
Garantías por time spreads
84 … 158,40 91,20 … 158,40 81,60 88,80 172,80 172,80 …
Total Garantías
-41.567 … -3.440,60 -44.929,80 … -5.990,60 -48.972,40 -52.025,20 -2.723,20 -4.373,20 …
f) Obtención de la “Garantía Grupo”.
Los pasos a realizar son los siguientes:
f.1 Máximo valor de la fila Total Garantías
Se selecciona de la fila Total Garantías la columna donde se registra el mayor importe, que corresponde al peor escenario inicial. No se consideran en este paso los escenarios de grandes posiciones.
f.2 Obtención delta del peor escenario inicial
Se selecciona la posición (delta) no consumida correspondiente a la columna del peor escenario inicial, obtenida en el apartado anterior f.1. Se suman las deltas de los diferentes vencimientos. Al resultado lo denominamos Delta Peor Escenario Inicial.
f.3 Determinación total de escenarios a considerar
Se calcula el porcentaje que representa la Delta Peor Escenario Inicial respecto al Volumen Medio Diario correspondiente a dicho producto publicado por MEFF, de acuerdo con la circular de “Volumen Medio Diario de Negociación”. En función del valor de dicho porcentaje, y de acuerdo con lo estipulado en la Circular de “Garantías adicionales para grandes posiciones en futuros y opciones”, se ampliarán el número de escenarios a considerar.
f.4 Obtención Garantía Grupo
Se selecciona de la fila Total Garantías la columna donde se registra el mayor importe, incluyendo el número ampliado de escenarios si de acuerdo con el apartado f.3 se registra una gran posición.
En el ejemplo anterior, el máximo valor de la fila Total Garantías sin considerar los escenarios de grandes posiciones, es decir, seleccionando sólo los escenarios 1 a 22, se registra en la columna 11, y es igual a -3.440,60 (en este caso, al tratarse de un beneficio, el menos negativo).
Si no hay grandes posiciones, esta es la Garantía Grupo. Es negativa debido al peso de las opciones compradas, lo que representa un crédito que podría utilizarse para reducir garantía exigida por otros Grupos, en caso de existir más posición abierta.
No obstante, para ver si hay grandes posiciones hay que comparar la delta correspondiente a dicha columna, que es la delta del peor escenario inicial, con el volumen medio diario (suponemos que es de 3.000 en este ejemplo) :
Delta del peor escenario inicial Vencimiento 1 | Columna 11 0 | |
Vencimiento 2 | 3.840 | |
Vencimiento 3 | 0 | |
Delta | 3.840 |
Delta peor escenario inicial / Volumen Medio Diario = 3.840 / 3.000 = 128%
Supongamos que la circular de “Garantías adicionales para grandes posiciones en futuros y opciones”, establece:
% sobre el Volumen Medio Diario | % de Incremento del intervalo de la Garantía por Posición Exigida |
Entre un 100% y un 150% | 22% |
Entre un 150% y un 200% | 41% |
Mayor a un 200% | 58% |
Como resultado, se deberán añadir los escenarios 23 a 26 de grandes posiciones, correspondientes al primer tramo, basados en el porcentaje de incremento del intervalo de garantía del 22%.
El máximo valor de la fila Total Garantías, la Garantía Grupo, finalmente se registra en la columna 25, y es igual a -2.723,20 euros.
5.- Compensación de garantías entre distintos Subyacentes.
De acuerdo con la Circular de “Parámetros a utilizar para el cálculo de la Garantía por posición”, pueden haber distintos Grupos con Subyacentes correlacionados entre sí, para los que se deberá disminuir la garantía (crédito) en función de la posición que se compense entre un Grupo y otro.
Los pasos a realizar son los siguientes:
a) Obtención de la Delta a aplicar en cada Grupo de Compensación, proceso que a la vez se compone de varios subprocesos:
a.1. Obtención de la Delta Inicial en cada Grupo de Compensación
a.2. Obtención de la Delta Teórica en cada Grupo de Compensación
a.3. Obtención de la Delta a aplicar en cada Grupo de Compensación
b) Selección de los subyacentes a compensar
c) Cálculo del número de spreads para los subyacentes a compensar
d) Obtención de la Delta Consumida y la Delta no Consumida en la compensación
e) Repetición del cálculo de los subyacentes a compensar hasta que no haya compensación posible
f) Cálculo del Descuento por Spreads obtenido en las compensaciones
g) Cálculo de la Garantía Final por cada Grupo de Compensación
Se describen a continuación los pasos a aplicar:
a.1. Obtención de la Delta Inicial en cada Grupo de Compensación.
En ese caso, a partir de las deltas no consumidas en time spreads en el apartado I.4., se deberá proceder del modo que se indica a continuación.
En primer lugar, se selecciona la posición (delta) no consumida correspondiente a la columna en la que se alcanza el valor máximo del Grupo de Compensación sin tener en cuenta grandes posiciones. Es decir, la delta del peor escenario inicial, obtenida en el apartado I.4.f.1. . Se suman las deltas de los diferentes vencimientos. Al resultado lo denominamos Delta Inicial.
En el ejemplo anterior, correspondería a la delta obtenida en 4.f.1, sin contemplar grandes posiciones, que se registra enla columna 11:
Delta no compensada en time spreads Vencimiento 1 | Columna 11 0 |
Vencimiento 2 | 3.840 |
Vencimiento 3 | 0 |
Delta Inicial | 3.840 |
a.2. Obtención de la Delta Teórica en cada Grupo de Compensación.
Seguidamente, se calcula una Delta Teórica, que presentará el mismo signo que la Delta Inicial, pero cuyo valor es el resultado de dividir los siguientes importes:
* Numerador que será la Pérdida Potencial Futura que puede experimentar la posición abierta en el Grupo de Compensación. Este importe es igual a la Garantía Grupo menos la pérdida acumulada al cierre, que se calcula a partir del promedio entre los valores de la fila Total Garantías registrados en las columnas 6 y 17 (donde el precio del subyacente es igual al precio de cierre):
Pérdida Potencial Futura Grupo = Garantía Grupo – Pérdida acumulada al cierre
En el caso de que la posición abierta sólo estuviera compuesta por futuros, la pérdida acumulada al cierre sería igual a 0, dado que los precios teóricos de los futuros en dichas columnas, por definición, son siempre 0, debido a que se liquidan diariamente.
* Denominador que será la Garantía por 1 delta, que es la pérdida potencial futura que puede experimentar 1 delta del Grupo de Compensación. Este importe es igual a:
- Si la fluctuación total a analizar viene expresada en puntos constantes: Fluctuación total a analizar en euros (en un sentido) / Multiplicador
- Si la fluctuación total a analizar viene expresada en porcentaje:
Fluctuación total a analizar (en un sentido) x Precio de cierre del subyacente
El importe resultante se redondea al número de decimales con que cotiza el Subyacente.
Los parámetros “Fluctuación total a analizar” y “Multiplicador” son los que aparecen definidos en la circular de “Parámetros a utilizar para el cálculo de la Garantía por posición” para el Grupo en cuestión. Si en un Grupo hay más de una fluctuación, porque se ha diferenciado según el vencimiento, para calcular la garantía por 1 delta se seleccionará la fluctuación más pequeña del Grupo.
Por tanto:
Delta Teórica = Pérdida Potencial Futura Grupo / Garantía por 1 delta del grupo
Volviendo al ejemplo, el promedio de los valores de las columnas 6 y 17 es -17.674,60, negativo, porque se trata de un beneficio. Para que dicho valor quede reducido a -3.440,60, debe producirse una pérdida potencial de 14.234:
Pérdida Potencial Futura Grupo = -3.440,60 – (-17.674,60) = 14.234
Y la pérdida potencial futura que puede experimentar 1 delta del Grupo, la Garantía por 1 delta, sería igual al precio de cierre del subyacente, igual a 8,89, por la fluctuación del 15%:
Por tanto:
Garantía por 1 delta = 15% x 8,89 = 1,33
Delta teórica = 14.234 / 1,33 = 10.702,26
a.3. Obtención de la Delta a aplicar en cada Grupo de Compensación.
Se compara la Delta Inicial y la Delta Teórica, y se selecciona –manteniendo el signo de la Delta Inicial- la delta con un menor valor absoluto, que será la Delta a Aplicar en la compensación con subyacentes de otros grupos.
Por tanto, se utiliza la siguiente fórmula:
Delta a Aplicar = Mínimo valor absoluto {Delta Inicial; Delta Teórica} * Signo Delta Inicial
En el ejemplo:
Delta a Aplicar = Mínimo valor absoluto {3.840; 10.702,26} * 1 = 3.840
b) Selección de los subyacentes a compensar.
Utilizando el orden establecido en la Circular de “Parámetros a utilizar para el cálculo de la Garantía por posición” se elige la pareja de subyacentes que tengan posiciones compensadas.
c) Cálculo del número de spreads para los subyacentes a compensar.
A continuación, se iniciará el cálculo del número de spreads entre cada par de Subyacentes utilizando las deltas para formar 1 spread, publicadas en la Circular de “Parámetros a utilizar para el cálculo de la Garantía por posición”.
Para ello, se aplicará la siguiente fórmula:
Número de spreads a utilizar = Mínimo valor absoluto {deltaGrupo A / delta para 1 spreadGrupo A ; deltaGrupo B / delta para 1 spreadGrupo B}
d) Obtención de la Delta Consumida y la Delta no Consumida en la compensación.
La delta consumida y no consumida en spreads para cada Subyacente será igual a:
Delta consumida en spreads = Nº de spreads x delta para 1 spread x signo delta
Delta no consumida en spreads = Delta a aplicar – Delta consumida en spreads
e) Repetición del cálculo de los subyacentes a compensar hasta que no haya compensación posible.
A continuación, se procede con la siguiente combinación de subyacentes a compensar y se repite este proceso hasta que no exista ninguna combinación de subyacentes susceptibles de ser compensados.
Para ilustrar la compensación entre distintos subyacentes, añadimos dos Grupos más (Grupos 2 y 3) al Grupo del ejemplo anterior (que denominamos Grupo 1). Supongamos que los parámetros indicados en la circular “Parámetros a utilizar para el cálculo de la Garantía por posición” son los que se indican en la siguiente tabla:
Orden | Grupo A | Delta para formar 1 spread | Grupo B | Delta para formar 1 spread |
1º | Grupo 2 | 210 | Grupo 3 | 100.000 |
2º | Grupo 2 | 160 | Grupo 1 | 100.000 |
3º | Grupo 3 | 7.600 | Grupo 1 | 10.000 |
y las Deltas a Aplicar son:
Delta a Aplicar | |
Grupo 1 | 3.840 |
Grupo 2 | 574,70 |
Grupo 3 | -4.214.525,15 |
De acuerdo con el orden indicado, primero se realizaría la compensación entre los Grupos 2 y 3:
Nº spreads = MinValAbs {574,70 / 210; -4.214.525,15 / 100.000} = 2,73666667
Restando la delta consumida en spreads, se determina la posición que puede seguir compensando con otros subyacentes:
Delta consumida en spreads | Delta no consumida en spreads | |
Grupo 2 | 2,73666667 x 210 x 1 = 574,70 | 574,70 - 574,70 = 0 |
Grupo 3 | 2,73666667 x 100.000 x -1 = -273.666,667 | -4.214.525,15- (-273.666,667) = -3.940.858,48 |
Únicamente el Grupo 3 puede seguir compensando: le queda delta no consumida, y presenta signo contrario a la delta del Grupo 1.
El nº de spreads entre los Grupos 1 y 3, y las deltas consumidas y no consumidas en spreads son:
Nº spreads = MinValAbs {3.840 / 10.000; -3.940.858,48 / 7.600} = 0,384
Delta consumida en spreads | Delta no consumida en spreads | |
Grupo 1 | 0,384x 10.000 = 3.840 | 3.840- 3.840= 0 |
Grupo 3 | -0,384 x 7.600= -2.918,40 | -3.940.858,48- (-0,384 x 7.600) = -3.937.940,08 |
f) Cálculo del Descuento por spreads obtenido en las compensaciones.
A continuación, por cada delta consumida en spreads, se calcula el importe a descontar de la Garantía Grupo, en función del parámetro Crédito sobre garantías que venga especificado en la Circular de “Parámetros a utilizar para el cálculo de la Garantía por posición”.
- Si el Crédito sobre garantías es porcentual, el Descuento por delta es igual a: Crédito sobre garantías x Garantía por 1 delta
- Si el Crédito sobre garantías viene expresado en unidades monetarias, el Descuento por delta es igual al importe del crédito.
Finalmente, el descuento por spreads se obtendrá aplicando la siguiente fórmula:
Descuento por spreads = Delta consumida en spreads * Signo delta * Descuento por delta
g) Cálculo de la Garantía Final por cada Grupo de Compensación
Los descuentos obtenidos se restan de la Garantía Grupo, obteniéndose una Garantía Final por cada Grupo de Compensación.
En el ejemplo, supongamos que el Crédito sobre garantías es del 60% para los spreads entre los Grupos 2 y 3, y del 55% para los spreads que se forman con los Grupos 1 y 3. Supongamos que la garantía por 1 delta del Grupo 2 es igual a 600, y para 1 delta del Grupo 3 es de 1,63. El descuento de garantías por spreads se muestra en la siguiente tabla:
Subyacente | Compensado con | Delta consumida | Crédito | Garantía 1 delta | Descuento por spreads |
Grupo 2 | Grupo 3 | 574,70 | 60% | 600 | 206.892 |
Grupo 3 | Grupo 2 | -273.666,667 | 60% | 1,63 | 267.646 |
Grupo 1 | Grupo 3 | 3.840 | 55% | 1,33 | 2.808,96 |
Grupo 3 | Grupo 1 | -2.918,40 | 55% | 1,63 | 2.616,35 |
Supongamos que para los grupos 2 y 3, la Garantía Grupo, es 751.128 y 9.599.676, respectivamente. Entonces, la Garantía Final por cada Grupo será:
Garantía Grupo (previa a la compensación de subyacentes) | Descuento por spreads | Garantía Final Grupo | |
Grupo 1 | -2.723,20 | 2.808,96 | -5.532,16 |
Grupo 2 | 751.128 | 206.892 | 544.236 |
Grupo 3 | 9.599.676 | 267.646 + 2.616,35 | 9.329.413,65 |
6.- Determinación de la Garantía Diaria por Cuenta.
La Circular de “Parámetros a utilizar para el cálculo de la Garantía por posición” establece los Grupos para los que la garantía por posición se calcula conjuntamente.
Se suman la Garantías Finales de los distintos Grupos, compensándose valores positivos y negativos. El valor finalmente obtenido corresponde a la Garantía por posición a constituir por Cuenta.
En caso de que dicho resultado fuera negativo, la Garantía por posición a constituir por la Cuenta sería cero.
En el ejemplo, el resultado del Grupo 1 se utiliza como crédito para reducir la garantía exigida para los Grupos 2 y 3. La Garantía por posición obtenida es 9.868.142,49 euros:
Grupo 1 | -5.532,16 |
Grupo 2 | 544.236,00 |
Grupo 3 | 9.329.413,65 |
Garantía por Posición: | 9.868.117,49 |
II. CÁLCULO DE GARANTÍA POR POSICIÓN SEGÚN EL TIPO DE CUENTA.
Cálculo de la garantía por Posición para una Cuenta de Cliente Individual o una Cuenta Propia
Se consolidará el total de las posiciones compradoras y vendedoras en cada contrato hasta obtener la posición neta del conjunto de subcuentas que pertenecen a la misma Cuenta.
Cálculo de la garantía por Posición para una Cuenta de Clientes Segregados
A efectos del cálculo de la garantía por posición, se calculará la posición neta de dicha Cuenta.
Cálculo de la garantía por Posición para una Cuenta de Clientes Agregados
A efectos del cálculo de la garantía por posición, se calculará la posición neta entre dicha Cuenta y la Cuenta Propia del Miembro.
MODELO DE BLACK DE VALORACIÓN DE OPCIONES
Se emplea el modelo de Black (1976) de valoración de opciones sobre futuros, que consiste en las siguientes fórmulas:
C = Fe-rt N (D) - Ee-rt N (D - v √t)
P = - Fe-rt N (- D) + Ee-rt N (v √t - D)
Ln(F E )
v t
v t
Donde, D = +
2
C = Valor teórico de una opción call P = Valor teórico de una opción put
F = Precio del subyacente (en este caso, un precio de futuro, cotizado o teórico)
E = Precio de ejercicio de la opción
t = Días a vencimiento / Días año (365 si el periodo analizado es superior a 365 días, y 360 en caso contrario)
v = Volatilidad anualizada (en porcentaje) r = Tipo de interés
e = Base del logaritmo neperiano
Para el cálculo de N (x), la función de distribución normal acumulada, se ha utilizado la siguiente aproximación polinómica:
2
Para x ≥ 0: N (x) = 1 - N ' (x) (0.4361836 k - 0.1201676 k
2
3
+ 0.9372980 k )
3
Para x < 0: N (x) = N ' (x) (0.4361836 k - 0.1201676 k
1
Donde, k = (1+ 0,33267 x )
+ 0.9372980 k )
N'(x) = La curva de distribución normal =
1 −x 2
2π
e 2
Cálculo de la delta
La delta se calcula del siguiente modo: Delta call = e-rt N (D)
Delta put = - e-rt N (-D)
MODELO BINOMIAL DE VALORACIÓN DE OPCIONES
Se emplea el modelo xx Xxx, Xxxx y Xxxxxxxxxx (1979) de valoración de opciones americanas sobre acciones que pagan dividendos. Es un método basado en la construcción de árboles binomiales.
Dado un número de iteraciones especificado (mínimo 50 iteraciones), y partiendo del valor del subyacente en el momento inicial, se considera que en el paso de una iteración a otra el subyacente puede alcanzar dos valores: o bien aumenta de valor en un factor “u”, o disminuye de valor en un factor “d”. Los valores del subyacente se ajustan ante la existencia de dividendos estimados.
A partir del árbol del subyacente, se construyen los árboles de las opciones call y put, en sentido contrario al árbol del subyacente: el punto xx xxxxxxx es la última iteración, que corresponde al vencimiento de la opción, y se va hacia atrás en el tiempo hasta finalizar en el momento presente.
Por tanto, partiendo del valor de la opción a vencimiento, nos movemos hacia atrás en el tiempo, valorando en cada nodo del árbol de la opción la posibilidad de esperar a vencimiento o ejercer anticipadamente. De las dos alternativas, se considera la que tiene mayor valor, y se descarta la otra. Se repite sucesivamente este proceso hasta alcanzar el momento inicial, en el que se obtiene el valor de la opción.
1.- Construcción del árbol del Subyacente.
El valor del subyacente en cada nodo se puede obtener a partir de la siguiente fórmula:
Si j = S’0 * uj * di-j + Di
donde:
Si j = Valor teórico del subyacente en cada nodo ij
S’0 es el precio del subyacente en el momento de la valoración, una vez descontado el valor actual de los dividendos a percibir entre la fecha de valoración y la fecha de vencimiento de la opción.
“u” y “d” son, respectivamente, los factores de aumento y disminución.
i: = { 0, 1, 2, …,50} es el número de iteración (por defecto nº iteraciones es 50, a no ser que en la Circular de “Parámetros a utilizar para el cálculo de las Garantía por posición” de se especifique otro valor)
j = {0, 1,2,…i} es el número de aumentos del precio
Di es el valor en la iteración “i” de todos los dividendos que quedan por repartir, entre la fecha que representa dicha iteración y la fecha de vencimiento
S’0 = S0 - Σ Dividendoα * e( -r * Días a Dividendo α / Días Año)
S0 = precio del subyacente en el momento de la valoración
α = {1, 2, .., Nº dividendos estimados} e = Base del logaritmo neperiano
r = Tipo de interés libre de riesgo
Días a Dividendo α= días entre la fecha de valoración y la fecha de pago del dividendo α
(Días a Vencimiento / Días Año) / Nº Iteraciones
Días Año = 365 si el periodo analizado es superior a 365 días, y 360 en caso contrario u = e Volatilidad
Días a vencimiento = días entre la fecha de valoración y la fecha de vencimiento de la opción d = 1 / u
Di = Σ Dividendoα * e -r /Días Año * (Días a Dividendo α - i * Días a Vencimiento / Nº iteraciones)
2.- Construcción de los árboles de las opciones (Call y Put).
El valor de las opciones Call y Put dependerán de la iteración en la que nos encontremos y del número de días hasta vencimiento:
1.1.- En el último nodo del árbol de la opción, los valores serán: CVj = Máx. (0 ; SVj – K) para la opción Call
PVj = Máx. (0 ; K - SVj) para la opción Put
Donde,
SV j = Valor teórico del subyacente a vencimiento, con j aumentos CV j = Valor teórico de la opción call a vencimiento, con j aumentos PV j = Valor teórico de la opción put a vencimiento, con j aumentos K = Precio de ejercicio de la opción
1.2.- Para cualquier otra iteración, el valor de una u otra opción dependerá de la siguiente fórmula:
Ci j = Máx. (p * Ci+1 j+1 + q * C i+1 j) * e – r * (Días a vencimiento / Días Año) / Nº iteraciones ; Si j – K
Pi j = Máx. (p * Ci+1 j+1 + q * C i+1 j) * e – r * (Días a vencimiento / Días Año) / Nº iteraciones ; K - Si j
Donde,
Ci j = Valor teórico de una opción call Pi j = Valor teórico de una opción put K = Precio de ejercicio de la opción
p (probabilidad movimiento al alza) = (e r * ( Días a Vencimiento / Días Año ) / Nº Iteraciones – d) / (u – d) q (probabilidad movimiento a la baja) = 1-p
El valor de la opción call en la fecha de valoración será C00 y el de la opción put será P00
3.- Cálculo de la delta.
Las deltas se calcularán del siguiente modo: Delta call = (C11 – C10) / (S11 – S10)
Delta put = (P11 – P10) / (S11 – S10)
ANEXO 3
MODELO DE BLACK Y XXXXXXX DE VALORACIÓN DE OPCIONES
Se emplea el modelo de Black y Xxxxxxx de valoración de opciones europeas sobre acciones, que consiste en las siguientes fórmulas:
C = (S-l) N (D) - Ee-rt N (D - v √t)
P = -(S-l) N (- D) + Ee-rt N (v √t - D)
Donde, D =
Ln(S − I Ee-rt )+ x
x
x x 0
C = Valor teórico de una opción call P = Valor teórico de una opción put
S = Precio del subyacente (en este caso, el precio de contado) l = Valor actual de los dividendos
E = Precio de ejercicio de la opción
t = Días a Vencimiento / Días Año 365 si el periodo analizado es superior a 365 días, y 360 en caso contrario)
v = Volatilidad anualizada (en porcentaje) r = Tipo de interés
e = Base del logaritmo neperiano
Para el cálculo de N (x), la función de distribución normal acumulada, se ha utilizado la siguiente aproximación polinómica:
Para x ≥ 0: N (x) = 1 - N ' (x) (0.4361836 k - 0.1201676 k2
2
3
+ 0.9372980 k )
3
Para x < 0: N (x) = N ' (x) (0.4361836 k - 0.1201676 k + 0.9372980 k )
Donde, k =
1
(1+ 0,33267 x )
N'(x) = La curva de distribución normal =
1 −x 2
2π
e 2
Cálculo de la delta
La delta se calcula del siguiente modo: Delta call = e-rt N (D)
Delta put = - e-rt N (-D)