Power Factor Design Criteria (Reactive Power A wind generating plant shall maintain a power factor within the range of 0.95 leading to 0.95 lagging, measured at the Point of Interconnection as defined in this LGIA, if the ISO’s System Reliability Impact Study shows that such a requirement is necessary to ensure safety or reliability. The power factor range standards can be met using, for example without limitation, power electronics designed to supply this level of reactive capability (taking into account any limitations due to voltage level, real power output, etc.) or fixed and switched capacitors if agreed to by the Connecting Transmission Owner for the Transmission District to which the wind generating plant will be interconnected, or a combination of the two. The Developer shall not disable power factor equipment while the wind plant is in operation. Wind plants shall also be able to provide sufficient dynamic voltage support in lieu of the power system stabilizer and automatic voltage regulation at the generator excitation system if the System Reliability Impact Study shows this to be required for system safety or reliability.
Tools and Equipment As established by current practices, the Employer may determine and provide necessary tools, tool allowance, equipment and foul weather gear. The Employer will repair or replace employer-provided tools and equipment if damaged or worn out beyond usefulness in the normal course of business. Employees are accountable for equipment and/or tools assigned to them and will maintain them in a clean and serviceable condition.
Power Factor Design Criteria Developer shall design the Large Generating Facility to maintain an effective power delivery at demonstrated maximum net capability at the Point of Interconnection at a power factor within the range established by the Connecting Transmission Owner on a comparable basis, until NYISO has established different requirements that apply to all generators in the New York Control Area on a comparable basis. The Developer shall design and maintain the plant auxiliary systems to operate safely throughout the entire real and reactive power design range. The Connecting Transmission Owner shall not unreasonably restrict or condition the reactive power production or absorption of the Large Generating Facility in accordance with Good Utility Practice.
Trunk Group Architecture and Traffic Routing 5.2.1 The Parties shall jointly establish Access Toll Connecting Trunks between CLEC and CBT by which they will jointly provide Tandem-transported Switched Exchange Access Services to Interexchange Carriers to enable such Interexchange Carriers to originate and terminate traffic from and to CLEC's Customers. 5.2.2 Access Toll Connecting Trunks shall be used solely for the transmission and routing of Exchange Access and non-translated Toll Free traffic (e.g., 800/888) to allow CLEC’s Customers to connect to or be connected to the interexchange trunks of any Interexchange Carrier that is connected to the CBT access Tandem. 5.2.3 The Access Toll Connecting Trunks shall be one-way or two-way trunks, as mutually agreed, connecting an End Office Switch that CLEC utilizes to provide Telephone Exchange Service and Switched Exchange Access Service in the given LATA to an access Tandem Switch CBT utilizes to provide Exchange Access in the LATA.
Access Controls a. Authorized Access - DST shall have controls that are designed to maintain the logical separation such that access to systems hosting Fund Data and/or being used to provide services to Fund will uniquely identify each individual requiring access, grant access only to authorized personnel based on the principle of least privileges, and prevent unauthorized access to Fund Data. b. User Access - DST shall have a process to promptly disable access to Fund Data by any DST personnel who no longer requires such access. DST will also promptly remove access of Fund personnel upon receipt of notification from Fund.