CERTIFICA,
Anexo I
D/Xx...............................................................SECRETARIO/A DEL
DEPARTAMENTO DE.......................................................................
DE LA UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA,
CERTIFICA,
Que el Consejo de Doctores del Departamento en su sesión de fecha.............................tomó el acuerdo de dar el consentimiento para su tramitación, a la tesis doctoral titulada “. ”
presentada por el/la doctorando/a D/Xx................................................................. y dirigida por el/la Doctor/a...............................................................................................
Y para que así conste, y a efectos de lo previsto en el Artº 6 del Reglamento para la elaboración, defensa, tribunal y evaluación de tesis doctorales de la Universidad de Las Palmas de Gran Canaria, firmo la presente en Las Palmas de Gran Canaria, a...de.............................................de dos mil............
Anexo II
UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA
Facultad de Economía, Empresa y Turismo
Programa de doctorado en Perspectivas Científicas sobre el Turismo y la Dirección de Empresas Turísticas.
Título de la Tesis
Additional economic effects and externalities in transport infrastructure
Tesis Doctoral presentada por D. Xxxx Xxxxxxxxx Xxxxxxxx Dirigida por el Xx. X. Xxxxx de Xxx Xxxxxxx
Codirigida por el Dr/a. D/Xx.
El/la Director/a, El/la Codirector/a El/la Doctorando/a,
(firma) (firma) (firma)
Las Palmas de Gran Canaria, a de febrero de 2013
DOCTORADO EN PERSPECTIVAS CIENTÍFICAS SOBRE EL TURISMO Y LA DIRECCIÓN DE EMPRESAS TURÍSTICAS
ADDITIONAL ECONOMIC EFFECTS AND EXTERNALITIES IN TRANSPORT INFRASTRUCTURES
Tesis doctoral presentada D. Xxxx Xxxxxxxxx Xxxxxxxx Dirigida por el Doctor X. Xxxxx de Xxx Xxxxxxx.
El Doctorando
El Director
Las Palmas de Gran Canaria, febrero de 2013
Resumen
La inversión en infraestructuras de transporte es una política muy utilizada por los gobiernos de diferentes ideologías para promover el crecimiento económico. Esta tesis aborda la conexión entre la inversión en infraestructuras y la existencia de efectos económicos adicionales, así como el tratamiento de otros efectos que no suelen recogerse en la evaluación económica de proyectos de inversión. Los efectos indirectos surgen en mercados imperfectos que tienen relación de complementariedad o sustituibilidad con el mercado de transporte en el que se realiza la inversión en infraestructuras. Además, estas inversiones interactúan sobre los mercados de factores, la distribución espacial de la actividad económica generando fuerzas de concentración y dispersión (economías de aglomeración), efectos sobre la competencia, y además de un conjunto de externalidades de distinto signo y magnitud.
El objetivo es, por tanto, desarrollar tanto a nivel teórico como empírico las líneas de investigación mencionadas. Para ello, la revisión de la literatura existente es una parte fundamental de esta tesis doctoral compuesta, además, por tres trabajos de investigación originales centrados a nivel empírico en la influencia de la alta velocidad ferroviaria en España, cuya importancia económica queda recogida en la elevada participación de dicha inversión en el gasto público en infraestructuras.
El primero de ellos es un análisis empírico de la influencia que la construcción de la alta velocidad española ha tenido sobre la densidad de empleo en las regiones afectadas por dicha infraestructura. El segundo contempla el efecto que la alta velocidad ferroviaria ha tenido sobre la reducción de los niveles de congestión y accidentes en las carreteras españolas derivada de la reducción del tráfico desviado. El tercero analiza los mecanismos de gestión de los mercados de emisiones proponiéndose una regulación alternativa a la existente que genera mejores resultados, en términos de bienestar social, en contextos de información imperfecta.
Curriculum vitae
Licenciado en Economía por la Universidad de Las Palmas de Gran Canaria y Master in Economics and Finance por el Centro de Estudios Financieros y Monetarios (CEMFI). En la actualidad, es miembro del Equipo de Investigación en Economía de las Infraestructuras y el Transporte (EIT) de la ULPGC.
Ha trabajado en la Fundación de Estudios de Economía Aplicada (FEDEA) y ha realizado una estancia de cuatro meses en el instituto de investigación VTI perteneciente a la KTH (Royal Institute of Technology, Estocolmo). Ha impartido docencia en la Universidad de Las Palmas de Gran Canaria y en el Master de Economía Industrial, en la especialidad de transporte (Universidad Xxxxxx III).
Además, ha recibido la Catedra Xxxxxxx Xxxxxxxx por la Universidad de Barcelona y ha participado en numerosos proyectos de investigación europeos y nacionales, tales como la elaboración de la guía de evaluación económica de proyectos del Ministerio de Fomento (CEDEX), para la Comisión Europea en el proyecto “Transport infrastructure impact on international competitiveness of Europe” y, para el Ministerio de Finanzas de Suecia en “Evaluación económica de la alta velocidad en Suecia”.
Dirección de email
Dirección
Universidad de Las Palmas de Gran Canaria. Facultad de Economía, Empresa y Turismo. Departamento de Análisis Económico Aplicado. Despacho D. 2.15. Campus Universitario de Tafira. 35017 Las Palmas de Gran Canaria.
Agradecimientos
Esta tesis no es el fruto de mi trabajo individual, sino el resultado de una suma de apoyos y esfuerzos a lo largo de muchos meses. A todas las personas que me han rodeado en este tiempo y que, consciente e inconscientemente, han hecho posible que finalizara esta ardua tarea, GRACIAS:
Agradezco al Xx. Xxxxx xx Xxx Xxxxxxx por haber confiado en mi y por la paciencia, no sólo en la dirección de esta tesis, sino en los años de trabajo conjunto. Por dedicarme el tiempo que no le sobra y por enseñarme que con ilusión y dedicación se obtienen los mejores resultados. También, a los compañeros del departamento por su preocupación y seguimiento en que todo estuviera dispuesto para que la tesis se convirtiera en mi única tarea.
A todos los que conforman mi familia y han estado en este tiempo conmigo. De ellos es una parte importante de esta tesis. En especial, a mis padres, a los que debo todo lo que soy y siempre serán mi referencia en la vida, les admiro. A mi hermana, por entender que la felicidad hay que buscarla y que tan sólo la búsqueda ya merece la pena y a mis abuelos, por estar siempre orgullosos de mi.
A ti, Xxxxx, por cuidarme, comprenderme y amarme sin condiciones. Por entender mejor que nadie lo que significa compartir y por tu paciencia infinita, por estar en los malos momentos y disfrutar conmigo los buenos. Simplemente por enseñarme que a tu lado hoy es siempre todavía y toda la vida es ahora.
Tabla de contenidos
I. Introducción 1
II. Objetivos 34
III. Planteamiento 36
IV. Metodología 37
IV. Aportaciones originales 44
V. Conclusiones obtenidas 45
Chapter 0. Introduction 51
Chapter 1. Literature Review 53
1.1. Introduction 53
1.2. Macroeconomic effects and convergence between regions 55
1.2.1. The long-term effect and convergence between regions 59
1.3. Effects on labour markets 61
1.4. Agglomeration economies 65
1.5. Imperfect competition 71
1.6. Environmental effects, accidents and congestion 73
1.6.1. Regulation and theory of environmental externalities 75
1.6.2. The role of accidents and congestion in the evaluation of infrastructure 77
Chapter 2. Regional Effects of Infrastructure: The Investment in High-Speed Rail Networks 81
2.1. Introduction 81
2.2. Data 84
2.2.1. Data treatment (GIS) 86
2.2.2. Matching 88
2.3. Static versus dynamic model 89
2.3.1. Fixed effects 90
2.3.2. Dynamic model 92
2.4. Results for a concentric circle of 20 km 95
2.5. Discussion 97
2.5. Conclusion. 101
Chapter 3. Social Benefits of High-Speed Rail: The role of accidents and congestion 103
3.1. Introduction 103
3.2. The role of accidents and congestion in infrastructure assessment 105
3.3. Data and empirical strategy 108
3.3.1. A preamble on the Spanish case 108
3.3.2. Data and methodology 110
3.4. Results 111
3.4.1. Accidents 112
3.4.2. Congestion 114
3.5. Social benefits of the reduction in accidents and congestion 116
3.5.1. Accidents 116
3.5.2. Congestion 117
3.6. Policy conclusions and recommendations 118
Chapter 4. Indexing Emission Carbon Taxes to Emission Permit Prices: A good idea? 121
4.1. Introduction 121
4.2. The Model 123
4.3. Indexed Carbon Tax 129
4.4. Conclusions. 142
2
Appendix 1. Derivation of the optimal policy mix (t1opt, q opt). 144
Appendix 2. Derivation of the optimal linear index policy (αopt, βopt, q2opt). 145
Appendix 3. Analytical expression to derive the covariance for indexed policy to outperform the alternatives. 146
Chapter 5. Conclusions. 147
Chapter 6. References 151
PARTE I
RESUMEN EN LENGUA CASTELLANA
Additional Economic Effects and Externalities in Transport Infrastructures
I. Introducción
La inversión en infraestructuras de transporte es una política muy utilizada por los gobiernos de diferentes ideologías para promover el crecimiento económico. Esta tesis aborda la conexión entre la inversión en infraestructuras y la existencia de efectos económicos adicionales, así como el tratamiento de otros efectos que no suelen recogerse en la evaluación económica de proyectos de inversión. Los efectos indirectos surgen en mercados imperfectos que tienen relación de complementariedad o sustituibilidad con el mercado de transporte en el que se realiza la inversión en infraestructuras. Además, estas inversiones interactúan sobre los mercados de factores, la distribución espacial de la actividad económica, generando fuerzas de concentración y dispersión (economías de aglomeración), sobre la competencia, y además producen un conjunto de externalidades de distinto signo y magnitud.
El propósito es, por tanto, comprender mejor los efectos de la inversión en infraestructuras de transporte sobre la actividad económica. Éstos pueden ser de carácter microeconómico, en los que esta tesis se centra principalmente, o agregados cuando la magnitud de la inversión tiene efectos sobre las variables macroeconómicas de la región.
Con frecuencia, la inversión de capital público es utilizada para estimular la actividad en el corto plazo, ya que durante el período de construcción existe un efecto multiplicador sobre el empleo; efecto keynesiano. Dicho efecto, por ser común a cualquier infraestructura, puede ignorarse generalmente en la evaluación de un proyecto concreto, siendo el fin del análisis económico encontrar cuál es el mejor modo de invertir dichos fondos, desde un punto de vista social, eligiendo entre los proyectos que compiten por los fondos públicos disponibles.
Para evaluar dicha contribución, los economistas clasifican los impactos de un proyecto en efectos directos, indirectos y adicionales. Los efectos directos son los que surgen en el mercado primario, es decir, el mercado donde se produce la intervención. Los efectos indirectos se generan en mercados secundarios relacionados con el mercado primario por la relación de complementariedad o sustituibilidad entre ellos y que han de ser recogidos en la evaluación social del proyecto. Para ello, dos características han de cumplirse; la existencia de
Additional Economic Effects and Externalities in Transport Infrastructures
distorsiones en dichos mercados secundarios y que las elasticidades cruzadas entre éstos y el mercado primario no sean cero. Además, existen los denominados efectos económicos adicionales que han de ser incluidos en la evaluación de un proyecto público ya que éstos no son doble contabilización y en determinados casos pueden ser sustanciales.
En esta última categoría se incluyen las economías de aglomeración, los efectos sobre los mercados en los que existe poder xx xxxxxxx y que usan el transporte como un input y, los efectos sobre la competencia como resultado de la implementación del proyecto.
Las economías de aglomeración son una externalidad positiva que los agentes generan cuando se localizan cerca produciendo ganancias de productividad que no son recogidas en los ahorros de tiempo, ni pueden ser atribuidas a la existencia de xxxxxx xx xxxxxxx. Mientras, los efectos sobre los mercados en los que existe poder xx xxxxxxx y que usan el transporte como input se caracterizan porque en ellos el precio es superior al coste marginal y la cantidad de equilibrio es subóptima. Una reducción de los costes de transporte incrementa la producción y reduce la pérdida de bienestar asociada el poder xx xxxxxxx, efecto que no se recoge ni en el excedente del consumidor, ni en el del productor.
Por último, la implementación de un proyecto de transporte puede tener efectos sobre la competencia de los mercados. Cuando los costes de transporte son elevados, proyectos que los reducen pueden facilitar la entrada de nuevas empresas que encuentra rentable ofrecer sus productos en relación a la situación sin proyecto, en la que el incumbente está protegido por las barreras a la entrada que le proporcionan los costes de transporte.
En relación a las externalidades que surgen de los proyectos de transporte, destacan las medioambientales que pueden ser incluidas en los efectos directos o indirectos. En el caso de los efectos medioambientales directos, éstos surgen en el mercado primario e incluyen todos los costes (o beneficios, si los hubiera) derivados del período de construcción y operación del proyecto de transporte. Mientras que los efectos medioambientales indirectos son aquellos que ocurren en los mercados secundarios en los que existen distorsiones y que están relacionados con el proyecto, como puede ser el mercado de emisiones de sustancias contaminantes. En este último caso, la existencia de xxxxxx xx xxxxxxx
Additional Economic Effects and Externalities in Transport Infrastructures
da lugar a que exista oportunidad de regulación, asunto que también es tratado en esta tesis.
Se establece que bajo el supuesto de competencia perfecta en los mercados, podemos centrarnos únicamente en los efectos económicos directos. Sin embargo, la existencia de efectos intermodales y externalidades nos alejan del supuesto anterior y nos obligan a considerar tanto los efectos indirectos, como los efectos económicos adicionales en la evaluación económica de proyectos.
Siguiendo este argumento, los trabajos que han medido los efectos sobre la productividad del capital público, en general, y de las infraestructuras de transporte en particular, han mostrado que, pueden ser importantes aunque los resultados obtenidos deben ser interpretados con cautela.
La relación entre capital público y privado es incierta, ya que ésta puede ser de complementariedad o sustituibilidad. Si son sustitutivos, la inversión pública puede desplazar a la inversión privada, mientras que si éstos son complementarios, la inversión pública inducirá una mayor inversión privada afectando positivamente los niveles de empleo.
En relación al mercado de trabajo, las infraestructuras de transporte pueden generar mercados de trabajo mas amplios y eficientes. Si los trabajadores están en un mercado con información completa y perfecta movilidad, éstos pueden elegir su trabajo de manera óptima lo que mejora el matching entre oferentes (trabajadores) y demandantes (empresas) de empleo dando lugar a incrementos de productividad en el largo plazo.
Por otra parte, la movilidad del factor depende, en gran medida, de las infraestructuras de transporte y los cambios de éstas afectan, a su vez, a la localización de las empresas y a su propia organización afectando su acceso a los mercados de bienes y factores y, por tanto, a los niveles de productividad (economías de aglomeración).
Las economías de aglomeración se basan, principalmente, en la existencia de rendimientos crecientes a escala en la dimensión espacial y surgen de diferentes fuentes, tales como el mercado de trabajo, los mercados de inputs o el spillover tecnológico. Son externalidades positivas que generan los agentes económicos cuando se localizan cerca los unos de los otros y el transporte es esencial para promoverlos. En este sentido, los servicios de transporte tienen efectos significativos sobre la accesibilidad y la reducción de las barreras
Additional Economic Effects and Externalities in Transport Infrastructures
comerciales entre las regiones que, al final, determinan la ubicación de las empresas, los consumidores y los trabajadores.
Por otra parte, las economías de aglomeración están estrechamente relacionadas con las estructuras xx xxxxxxx. Mercados aislados en los que el transporte no está lo suficientemente desarrollado, son más propensos a presentar estructuras xx xxxxxxx poco competitivas. Por ello, el papel de las infraestructuras de transporte es claro; la mejora de la conectividad o la accesibilidad reduce los costes a los que se enfrentan los agentes creando mercados más amplios en los que surjan nuevas oportunidades y, también, nuevas amenazas para los operadores existentes aumentando las fuerzas competitivas y su eficiencia.
Por último, debemos incluir las externalidades, en general, y los efectos ambientales, en particular, como elementos de la política de transporte. La prestación de servicios de transporte y la construcción de infraestructuras afectan y se ven afectadas por las condiciones medioambientales y por la regulación en dicha materia, especialmente la regulación relativa a la emisión de gases contaminantes, asociados al calentamiento global.
A continuación, abordaremos los efectos macroeconómicos sobre las magnitudes agregadas y el papel de las infraestructuras de transporte en la convergencia entre regiones. Posteriormente, nos centraremos en el impacto de la infraestructura sobre el mercado laboral y en las economías de aglomeración. Finalmente, nos referiremos a las estructuras xx xxxxxxx y su relación con las infraestructuras de transporte; así como a las externalidades, en especial, los accidentes, la congestión y a la regulación ambiental.
Efectos macroeconómicos y convergencia entre regiones
La inversión pública es considerada una herramienta para impulsar el crecimiento económico y el empleo en el corto plazo. Sin embargo, no puede ignorarse el posible efecto expulsión sobre inversiones más productivas, ni que los efectos finales no son siempre los esperados.
Additional Economic Effects and Externalities in Transport Infrastructures
Xxxxxxxx (1989) evalúa el papel del Estado en el crecimiento económico y en la mejora de la productividad, otorgando un papel importante a la inversión pública. Su trabajo es el origen de una literatura amplia centrada en conocer la relación entre el nivel total de inversión en infraestructuras y el desarrollo económico, medido por el PIB, el crecimiento de la productividad o el empleo.
Atendiendo a la consideración de la infraestructura como un input que actúa en la función de producción, Xxxxxxx (1990a) también encuentra efectos positivos de la inversión pública sobre la producción y el crecimiento económico, afirmando que la desaceleración de la productividad de los EE.UU. se debió a una disminución en el crecimiento de la inversión en infraestructura pública.
Sin embargo, existen también otros trabajos que presentan resultados opuestos a los anteriormente mencionados. Algunos sugieren que el producto marginal del capital público es superior al privado (Xxxxxxxx 1989 y Xxxxxxx 1992); otros que es aproximadamente igual (Xxxxxxx 1990b); otros que es inferior al del capital privado (Xxxxxx 1986 y Xxxxx-Xxxxx 1994) y, en algunos casos, incluso negativo (Xxxxx y Karras 1994 y Xxxxxx y Xxxxxx, 1991).
Xxxxxxxx (1994) sostiene que la existencia de resultados tan diversos se debe, principalmente, a problemas estadísticos no resueltos previamente, entre los que destacan la causalidad inversa o endogeneidad entre la productividad del capital público y el crecimiento; la presencia de correlaciones espurias debido a la no estacionariedad de las series o, la omisión de variables relevantes. En este sentido, la dirección de la causalidad no es fácil de detectar estadísticamente, ya que la infraestructura puede liderar o derivarse del crecimiento económico. Para tratar el problema de la causalidad, varias soluciones empíricas incompletas han sido a menudo implementadas; la más recurrente es el uso de datos de panel.
Los datos de panel permiten el uso de leads (variables futuras) y lags (variables retardos). El problema es que podría existir un lag en ambas direcciones; por un lado, el tiempo necesario para que los agentes se adapten a cambios en la infraestructura y, por otro lado, el tiempo necesario para que el crecimiento de la producción genere umbrales de demanda que justifiquen la nueva infraestructura. También, podrían utilizarse variables leads si los agentes tienen expectativas sólidas sobre los cambios futuros en las infraestructura de transporte, anticipando la explotación de las ventajas competitivas potenciales. Todos estos problemas introducen dificultades en la estimación econométrica que explican, en parte, la amplia gama de resultados (Jiwattanakulpaisarn, 2008).
Additional Economic Effects and Externalities in Transport Infrastructures
También, hay otros dos aspectos en los análisis macroeconómicos presentados que aún no han sido resueltos. En primer lugar, la medición de las variables puede ser problemática. El stock de infraestructura es una variable imperfecta para medir la efectividad de los servicios potenciales de dicha infraestructura y, por tanto, de su influencia sobre la productividad. En segundo lugar, las elasticidades macro obtenidas en los trabajos previos no son útiles cuando hay que tomar decisiones sobre proyectos específicos, para los que hay que considerar sus particularidades y su ubicación en el conjunto de la red. Como resultado, el papel de la dimensión espacial de la infraestructura tiene que ser analizado.
La inversión en una región depende de la provisión de infraestructura en otras regiones, además de depender de las condiciones locales y los modos de transporte existentes. La disposición de una nueva infraestructura no garantiza un mejor desarrollo de la región en la que se construye. La existencia de fuerzas de dispersión puede conducir a una deslocalización de las empresas reduciendo los beneficios esperados de la infraestructura.
Estos efectos pueden ser ignorados suponiendo la existencia de competencia perfecta y rendimientos constantes a escala, también en la dimensión geográfica; sin embargo, la propia naturaleza de la infraestructura hace que, con frecuencia, estos supuestos previos se incumplan. La modelización macroeconómica tradicional de la infraestructura no suele considerar su dimensión espacial y, por tanto, no puede recoger en su totalidad los efectos de dicha infraestructura sobre los mercados de trabajo y sobre la estructura competitiva entre (y dentro de) las regiones siendo ésta una de las razonas del desarrollo de la denominada nueva geografía económica.
En este contexto, el papel de los costes de transporte es crucial porque éstos actúan como una barrera a la entrada, lo que limita la capacidad de la infraestructura para producir fuerzas de concentración y especialización. Bajo el supuesto de altos costes de transporte, si se produce una caída de los costes entre ambas regiones se fomenta un incremento del comercio bilateral. Ahora bien, los resultados finales dependerán del tamaño de las regiones, de la movilidad de los factores, especialmente de la mano de obra y de los propios costes de transporte que son esenciales para producir un flujo de actividad entre ambas regiones.
Suponiendo que no existe movilidad del factor trabajo y que los costes de transporte son intermedios, Xxxxxxx y Xxxxxxxx (1995) muestran que son las
Additional Economic Effects and Externalities in Transport Infrastructures
regiones grandes, en términos de población, las que se benefician de la mejora de la infraestructura, concentrando en ellas la mayor parte de la actividad, lo que a su vez, genera diferencias en términos de los salarios reales. Sin embargo, una reducción adicional de los costes de transporte reduce la importancia para las empresas de ubicarse cerca de los mercados más grandes y, por tanto, los bajos salarios reales en la región de menor concentración podrían atraer a las empresas convirtiéndolas en exportadoras netas. El escenario cambia si suponemos movilidad del factor trabajo entre regiones y Krugman (1991) demuestra que es posible, en este caso, que toda la industria se concentre en una sola región.
Sin embargo, los modelos anteriores se basan en la existencia únicamente de dos sectores por región. Por esta razón, Xxxxxxxx (1999) extiende el modelo a un continuo de sectores que operan en competencia imperfecta mostrando que no existe un único equilibrio, lo que implica que dos regiones idénticas no necesariamente dividen en partes iguales sus cuotas xx xxxxxxx y que el reparto final dependerá de las barreras comerciales y de los costes de transporte. En definitiva, los costes de transporte altos o bajos conducen a las regiones a mantener su cuota xx xxxxxxx, mientras que para los niveles intermedios existen multiplicidad de equilibrios.
Xxxx (1999) explora la misma relación entre los costes de transporte y el comercio mostrando que las industrias se ubican cerca del consumidor y dispersan entre las regiones cuando los costes de transporte son altos, mientras que crean fuerzas de aglomeración cuando los costes son intermedios. El resultado se ve potenciado cuanto mayor sea la movilidad del factor trabajo porque los trabajadores se trasladan a lugares con salarios reales más altos, mientras que la falta de movilidad obliga a las industrias a dispersarse, resultados que están alineados con los descritos anteriormente en Xxxxxxx y Xxxxxxxx (1995).
La diferencia de los salarios reales entre regiones puede ser una consecuencia de los aumentos de productividad derivados de las economías de aglomeración. Xxxxxxxx (2007) formaliza este argumento y muestra que las estimaciones de la elasticidad de la productividad con respecto a la aglomeración pueden ser utilizadas para arrojar luz sobre la magnitud de este efecto. En su modelo teórico relaciona la productividad y la inversión en infraestructuras de transporte considerando el tamaño de la ciudad. El objetivo es distinguir cambios en los impactos que se derivan de las inversiones en transporte debido al efecto
Additional Economic Effects and Externalities in Transport Infrastructures
tamaño sobre la productividad (aglomeración), a partir de los beneficios económicos que se derivan de los recursos ahorrados en desplazamientos y de un aumento en la producción a nivel ciudad.
Sin embargo, la inversión en infraestructuras de transporte, condicionada por sus propias características tecnológicas, no es el único elemento que afecta a la dimensión espacial de la actividad económica. Hay, también, otras variables con influencia en la relocalización de la actividad, tales como los precios relativos de los factores de producción entre regiones o la situación económico- financiera (Xxxxxxxxx, 1991).
De la discusión anterior, podemos establecer que no hay posibilidades de aplicar una regla común para conocer los efectos finales de una nueva infraestructura. Sin embargo, de la discusión sobre el papel de los costes de transporte concluimos que los ahorros de tiempo ahorro producidos por la mejora o construcción de una infraestructura de transporte no siempre generan convergencia regional, ya que el resultado final depende principalmente de los niveles iniciales de los costes de transporte y la movilidad de factores.
El efecto a largo plazo y la convergencia entre las regiones
Una vez examinado el papel de la inversión pública en las infraestructuras y la importancia de la dimensión espacial para caracterizar sus efectos sobre la actividad económica, pasamos a describir el efecto de la inversión pública en infraestructuras de transporte en el largo plazo y su capacidad para lograr la convergencia regional.
Encontrar que el capital público es productivo, no es suficiente para asegurar que la inversión pública estimula el crecimiento a largo plazo. Al menos tres aspectos han de ser considerados.
En primer lugar, hay que determinar si un incremento de la inversión pública induce a un aumento permanente, o sólo temporal, en el crecimiento económico. El modelo de crecimiento neoclásico xx Xxxxx (1956) predice que cualquier aumento en las tasas de ahorro nacional y la inversión tienen un efecto positivo y transitorio sobre el crecimiento económico; la tasa de crecimiento en
Additional Economic Effects and Externalities in Transport Infrastructures
el estado estacionario de la economía está totalmente determinada por el crecimiento demográfico y el progreso tecnológico. En dicho contexto neoclásico, un incremento en el gasto del capital público productivo induce un incremento temporal de la inversión. Sin embargo, el ritmo de acumulación del capital y del crecimiento económico, se reducen con el tiempo, ya que la acumulación de capital disminuye el rendimiento del capital y los incentivos para nuevas inversiones. En el largo plazo, el nivel de producción será mayor pero la tasa de crecimiento de la producción volverá a los niveles iniciales, antes del incremento del gasto público.
En segundo lugar, el efecto de un aumento de la inversión pública en el crecimiento económico es probable que dependa de la productividad marginal relativa del capital privado versus el capital público. En un contexto neoclásico, un incremento de la inversión pública aumenta (disminuye) la tasa de crecimiento económico en función de si el producto marginal del capital público es superior (inferior) al producto marginal del capital privado. Esta consideración valida las preocupaciones xx Xxxxx (1990) y otros autores que afirman que el rango de estimaciones obtenidas en relación a las elasticidades del capital público es demasiado amplio como para aportar información robusta y útil para el proceso público de toma de decisiones.
En tercer lugar, el efecto de la inversión pública sobre el crecimiento es probable que dependa, en gran medida, de cómo dichas inversiones son financiadas. Estudios empíricos como los xx Xxxxx y Xxxxxxx (1996) encuentran evidencia de que aumentos en las tasas impositivas reducen la tasa de crecimiento económico. Por lo tanto, es de esperar que el aumento del capital público que, en la mayoría de los casos requerirá el correspondiente aumento de los tipos impositivos, estimulará el crecimiento económico sólo si el impacto sobre la productividad del capital público supera el impacto fiscal adverso.
Centrando el debate en el caso español, durante los años 80 y 90, los porcentajes del PIB español y alemán dedicados a la inversión pública en infraestructuras de transporte eran los mayores de la Unión Europea (UE) y su contribución al crecimiento fue considerado lo suficientemente alto como para continuar con esta política expansiva (Mas et al., 1996). Sin embargo, dicho esfuerzo, lejos de disminuir progresivamente, hoy es el doble de la media de la Unión Europea, lo que siguiendo la teoría neoclásica ha llevado al agotamiento del crecimiento impulsado por la inversión en infraestructura (Mas, 2007). Como
Additional Economic Effects and Externalities in Transport Infrastructures
se ha dicho anteriormente, la acumulación de capital disminuye su producto marginal reduciendo así, su contribución al crecimiento económico. Ésta es la razón por la cual no se puede afirmar categóricamente que exista crecimiento de largo plazo y por la que hay que ser pesimistas con respecto a la contribución de las infraestructuras de transporte a la senda de crecimiento (Mas, 2007).
Otras consideraciones para evaluar el impacto de la infraestructura pública sobre el crecimiento económico son el mecanismo de financiación y la estructura tributaria. En España, nos encontramos con que la política de transportes no sólo está en manos del gobierno nacional, sino también de los gobiernos regionales. Por lo tanto, hay que contemplar la existencia y las consecuencias de los diferentes niveles de gobierno y los incentivos del sistema de financiación autonómico que son esenciales para explicar los mecanismos que favorecen la inversión de infraestructuras en transporte y la tendencia a la sobreinversión.
En España, la política fiscal actual ofrece pocos incentivos para un uso eficiente de fondos, y la razón principal es que no hay una correspondencia directa entre los gastos y los impuestos recaudados. El mecanismo ofrece incentivos, a nivel regional, para exagerar las necesidades de financiación de los Fondos Estructurales que, de lo contrario, irían a otra región.
En particular, para explicar el posible exceso de inversión de la infraestructura pública en España es importante, también, evaluar la eficacia de los contratos entre los diferentes niveles de gobierno. En este sentido, la incertidumbre asociada con la vida del proyecto y el reparto de riesgos hace más difícil lograr la eficiencia en la elección de los contratos (Socorro y xx Xxx, 2010).
Por otra parte, la regulación española reduce el interés de los agentes privados para evitar la proliferación de infraestructuras públicas de escaso valor social, ya que las renegociaciones de los contratos de concesión desequilibran la asignación de riesgos en perjuicio de los contribuyentes.
En conclusión, las políticas españolas de transporte e infraestructuras no se basan en una estrategia establecida que priorice los proyectos socialmente deseables, como muestra la apuesta por el tren de alta velocidad que es un modo de transporte con altos costes fijos y de mantenimiento (Campos et al., 2009) y que requiere un volumen de demanda mucho más elevado de los actualmente existentes en España, con efectos discutibles sobre la convergencia de las regiones.
Additional Economic Effects and Externalities in Transport Infrastructures
Además, esta infraestructura particular se asocia con la existencia de un "efecto túnel" (Xxxxxxxxx Puebla, 2004). Éste se define como el potencial de desarrollo de los diferentes nodos de la red y la incapacidad para generar actividad económica en todo el territorio a lo largo del que se desarrolla. Por lo tanto, este efecto de polarización conduce a un aumento de la accesibilidad en los nodos de la infraestructura, aislando a las regiones intermedias de los polos de atracción de las empresas.
Para resumir esta subsección, podemos afirmar que hay tres aspectos que explican por qué la inversión en infraestructura no ha tenido impacto sobre el crecimiento económico y la convergencia entre las regiones: el producto marginal decreciente del capital, el sistema de financiación y los incentivos en el diseño de los contratos.
Efectos de las infraestructuras de transporte sobre el mercados de trabajo
La relación entre la infraestructura y el factor trabajo tiene dos vertientes. Por un lado, el trabajo es un input y un coste. Por otro lado, la inversión en infraestructura puede tener efectos positivos sobre el trabajo a nivel agregado que afecten tanto a la oferta como a la demanda xxx xxxxxxx; desde el lado de la oferta, la mejora de las infraestructuras de transporte reducen el tiempo de desplazamiento incrementando el número de trabajadores potenciales para una ubicación dada y, desde el lado de la demanda, las empresas pueden obtener ganancias de productividad derivadas de un mejor matching en el mercado laboral.
Así, la literatura existente enfatiza el papel que desempeña la infraestructura pública en las decisiones de producción y la localización de las empresas (Munnell y Cook, 1990). Por lo general, hay dos enfoques para analizar los efectos de la inversión en infraestructura sobre las empresas, la función de producción y la función de costes. El enfoque de la función de producción se centra en los cambios en los niveles de producción total, mientras que la función de costes pone énfasis en los cambios en los costes de transporte de los inputs y los productos.
Additional Economic Effects and Externalities in Transport Infrastructures
En primer lugar, los cambios en la infraestructura de transporte pueden llevar a ajustes en los inputs utilizados, ya que puede proporcionar nuevas posibilidades de producción. El stock de la infraestructura de transporte puede ser introducido en la función de producción a través de dos canales diferentes; puede considerarse como un nuevo input, contribuyendo directamente a la función de producción, tal y como ocurre tradicionalmente con el trabajo y el capital. O, puede ser incluido como un factor que aumenta la productividad de otros inputs utilizados. En este caso, las mejoras en las infraestructuras de transporte puede considerarse generalmente como un incremento en la tecnología de producción que aumentan la productividad global. Este enfoque tiene la ventaja de captar la relación de complementariedad entre los factores, esto es, el stock de capital de la infraestructura no contribuye a la producción sin la utilización de los otros factores.
En segundo lugar, la infraestructura de transporte también puede aumentar la productividad de las empresas reduciendo los costes de transporte de los inputs y los productos. Es decir, un incremento en la fiabilidad del transporte permite a las empresas reducir los costes de stock o inventario o también permite mejorar el acceso a los clientes finales, alentando a las empresas a aprovechar las economías de escala al servir mercados más grandes. Esto se traducirá en una reducción de los costes medios a largo plazo que, a su vez, generan un aumento de la productividad. Además, la inversión en infraestructuras de transporte puede ser la responsable directa de aumentar la productividad del trabajo, mediante la reducción del tiempo de viaje (SACTRA, 1999).
La reducción de los costes facilita a las empresas ampliar sus mercados y experimentar ganancias de productividad que podrían dar lugar a la reducción de precios de sus productos. La caída de los precios relativos estimularía la demanda de productos producidos por dichas empresas, lo que aumentaría, a su vez, la demanda de trabajadores y su impacto vendría determinado por la elasticidad precio-demanda del producto (Button, 1998). Además, un entorno más productivo podría ser favorable para atraer nueva inversión lo que estimularía la expansión de las empresas existentes y atraería inversión privada generando un aumento de la producción global y una mayor demanda de empleo.
Por lo tanto, las áreas xxx xxxxxxx de trabajo tienden a aumentar en base a la reducción de los costes de desplazamiento (SACTRA, 1999; Xxxxxxxxx, 2002). La reducción de los costes de transporte permite a los trabajadores
Additional Economic Effects and Externalities in Transport Infrastructures
aumentar el área de búsqueda de empleo y hacer viajes más largos para un coste generalizado equivalente. La mejora de los servicios de transporte permite, por tanto, a las empresas contratar trabajadores provenientes de regiones más alejadas.
Además, la mejora de la accesibilidad anima, también, a nuevos trabajadores a incorporarse al mercado laboral por la aparición de nuevas oportunidades. Xxxxxx (1996) sugiere que los costes de transporte afectan las decisiones individuales de las personas sobre su incorporación al mercado de trabajo sobre la base de que los costes del trayecto elevan el salario de reserva que, a su vez, reducen la probabilidad de ingresar en el mercado laboral. No obstante, la reducción del tiempo de viaje y los costes asociados, por la mejora de las infraestructuras, eliminan o reducen significativamente esta barrera facilitando a los individuos la búsqueda de empleos con salarios más altos o iguales que su salario de reserva.
La idea básica de esta corriente de la literatura es que la decisión de localización de las empresas y los hogares es simultánea (Carlino y Xxxxx, 1987; Xxxxxxx, 1994). Dado que los trabajos y los individuos se localizan de manera conjunta, algunas empresas pueden preferir ubicarse cerca de un gran número de clientes y mano de obra calificada. Además, pueden aparecer respuestas migratorias que conduzcan a un aumento de la población, lo que represente no sólo el aumento de clientes potenciales en el mercado local de las empresas, sino también un incremento de la fuerza de trabajo potencial en la región. Esa es la razón principal por la que estos efectos potenciales de inversión de infraestructuras de transporte en los mercados laborales y de productos también pueden ser un factor determinante de la ubicación de las empresas.
Sin embargo, en el largo plazo, los estudios proporcionan resultados no concluyentes. La literatura que versa sobre el impacto de las carreteras en el empleo es un claro ejemplo. Algunos estudios encuentran que el empleo está positiva y significativamente relacionada con el stock de infraestructura vial (Xxxxxxx et al, 1992; Xxxxxxxxx et al, 1998), el gasto público (Xxxxxxx y Xxxxxxxxx, 1994, Islam, 2003), y la disponibilidad de acceso a las autopistas (Luce, 1994, y Xxxxxxx, 1994), otros estudios no muestran un efecto significativo (Xxxxx-Deno, 1998; Xxxxx y Xxxxxx, 1996). Mientras que otros trabajos establecen que un aumento del capital invertido en carreteras (Pereira, 2000) o
Additional Economic Effects and Externalities in Transport Infrastructures
del gasto público (Xxxxxxxxx y Xxxxxxxxx, 1995) podrían reducir la demanda de empleo agregada.
Podemos, por tanto, afirmar que el efecto de la inversión en infraestructuras públicas sobre el empleo ha sido ampliamente estudiado aunque no exista consenso sobre el signo y la magnitud de los resultados, generando incertidumbre en el diseño de políticas publicas destinadas a fomentar el empleo, a través de la inversión en la dotación de infraestructuras.
Los beneficios laborales asociados al gasto público en infraestructura podrían reducirse rápidamente después del período de construcción, por lo que deberíamos considerar si el efecto no es más que un cambio temporal del nivel de empleo debido al gasto del gobierno.
En cierta medida, el resultado final va a depender de la movilidad de la fuerza laboral. La concentración de la actividad económica induce a los trabajadores a trasladarse a la región más grande con el fin de encontrar mejores oportunidades de trabajo y salarios más altos. Este fenómeno, que se debe en parte a la reducción de los costes, puede generar un efecto sobre la productividad en la región más grande que puede tener efectos sobre los ingresos fiscales si existe un incremento en las horas de trabajo o, si éstos se trasladan a empleos más productivos.
Este efecto puede ser significativo a nivel individual y, al mismo tiempo, tener efectos sustanciales sobre el PIB, especialmente en el caso de las infraestructuras de transporte que son usadas principalmente por motivos de trabajo, como podrían ser el metro u otras infraestructuras de transporte local (Xxxxxxxx, 2007). Por tanto, éstos efectos deben incluirse en el análisis coste- beneficio ya que, por lo general, se ignoran al suponer la existencia de mercados de trabajo perfectamente competitivos.
Xxxxxxxx y Xxxxxxxx (2008) muestran que las consecuencia de omitir imperfecciones en el mercado de trabajo pueden ser considerables. La reducción de los costes de transporte permite realizar la búsqueda de empleo en un área más grande por lo que, la duración esperada de los puestos vacantes se reduce, provocando que los beneficios compensen la pérdida derivada de los sobrecostes de transporte. Además, demuestran que las imperfecciones en el proceso de búsqueda abre una brecha entre el producto marginal del trabajo y el salario, tal que los beneficios finales de una mejora de transporte exceden los presentados en un coste-beneficio convencional.
Additional Economic Effects and Externalities in Transport Infrastructures
La principal fuente de imperfección es la ausencia de información completa necesaria para alcanzar equilibrios en el mercado laboral en cada momento del tiempo. El trabajador se enfrenta, usualmente, a un trade-off entre su trabajo ideal y los costes de transporte; en primer lugar, un trabajador podría aceptar un trabajo que no coincide perfectamente con su trabajo ideal, pero en el que los costes de transporte son bajos compensado la pérdida anterior o, en segundo lugar, podría aceptar su puesto de trabajo más alejado que se vería compensado por los costes adicionales de desplazamiento.
En el caso de existir incertidumbre en el proceso de búsqueda, el trabajador tiene que elegir sopesando si buscar únicamente a nivel local evitando altos costes de transporte con un riesgo asociado de la duración del desempleo más alta o buscar en un área más amplia reduciendo la duración esperada del desempleo aunque afrontando costes de transporte más altos. Bajo este contexto, los trabajadores toman decisiones de búsqueda en base a los costes de desplazamiento y la duración del desempleo esperados. Como es habitual en este tipo de problemas, el trabajador maximiza su utilidad esperada alcanzando un resultado subóptimo.
Puede concluirse esta relación sosteniendo que, a nivel agregado, los resultados no son concluyentes. La movilidad del factor es un aspecto crucial para maximizar los beneficios potenciales de la mano de obra asociada a la construcción o mejora de la infraestructura y, el precio relativo del trabajo es fundamental para alcanzar el equilibrio final entre las regiones, teniendo en cuenta que dicho factor se remunera a su productividad marginal
A nivel regional o local, los efectos se caracterizan más fácilmente y se ha demostrado que existe un efecto de la infraestructura en la elección individual de los trabajadores y las empresas. La inversión de la infraestructura, si y sólo si reduce costes de transporte, mejora el matching en el mercado de trabajo y genera economías de aglomeración. Pero, este impacto también se vería afectado por problemas de información, en cuyo caso, parte de los beneficios asociados a la inversión en infraestructura se perderían debido a los costes de transporte adicionales que se incurren en el proceso de búsqueda de empleo.
Additional Economic Effects and Externalities in Transport Infrastructures
Los efectos de las economías de aglomeración
Las economías de aglomeración son efectos sobre la dimensión espacial de la actividad económica que surgen de la proximidad de los agentes con independencia de si los rendimientos crecientes a escala se deben a la concentración de consumidor/proveedor (Xxxxxxx et al., 2001), a los efectos secundarios empresariales (Xxxxxxx, 2007) ó a la concentración en el mercado laboral (Marshall, 1920). Formalmente, hay, por lo tanto, una imperfección xx xxxxxxx que es necesario analizar y cuyos principales mecanismos de transmisión son:
• Spillovers tecnológicos. Es más probable que las empresas aprendan las innovaciones de otras empresas si están físicamente cerca, y la evidencia sugiere que es lo es aún más si están cerca de empresas similares.
• Efectos en los mercados de factores. Al ubicarse juntos, los proveedores y los compradores pueden minimizar los costes de transacción y transporte, compartiendo una infraestructura costosa y manteniendo los precios bajos debido al efecto de la competencia.
• Efectos xxx xxxxxxx de trabajo. Es más probable que las empresas encuentren los trabajadores idóneos cuando se localizan cerca de mercados de trabajo más amplios.
Centrándonos en los spillovers tecnológicos como mecanismos de transmisión de las economías de aglomeración, Xxxxxx et al. (1993) proporcionan la evidencia más convincente de que la difusión de conocimientos es importante y se atenúa con la distancia geográfica. Su resultado se basa en que las citas de patentes están altamente concentradas en el espacio. Otros trabajos, como Xxxxxx (1989) y Acs et al. (1992) coinciden con los resultados anteriores.
Las economías de aglomeración podrían también surgir de la concentración de consumidores esencial para el suministro al por menor de productos, debido a la existencia de elevados costes fijos en la distribución. De hecho, las áreas con mayor número de personas tienden a tener un mayor número relativo de puntos de venta al por menor.
Xxxxxxx et al. (2001) sostienen que hay cuatro formas fundamentales en el que las grandes ciudades fomentan el consumo. En primer lugar, pueden existir bienes y servicios disponibles en las grandes ciudades que no están disponibles en otras de menor tamaño; en segundo lugar, las grandes ciudades pueden ofrecer
Additional Economic Effects and Externalities in Transport Infrastructures
atractivos diversos; en tercer lugar, las ciudades de gran tamaño puede proveer bienes públicos que no serían posible en ciudades más pequeñas y, finalmente, la densidad de una ciudad grande permite que la velocidad de interacción entre los agentes sea mayor.
En relación al mercado de trabajo, existen varios aspectos de interés. Los trabajadores encuentran mejores oportunidades de empleo en las grandes ciudades (efecto urbanización) o en las concentraciones industriales (efecto localización), en consonancia con la idea xx Xxxxxxxx sobre la especialización de la mano de obra como ventaja competitiva. En segundo lugar, los trabajadores y las empresas hacen frente a riesgos de diversa índole en el mercado de trabajo (riesgo moral y selección adversa) por lo que la concentración los reduce, por ejemplo, a través de mecanismos de intermediación especializados.
En el mercado local, la concentración de la demanda fomenta la aglomeración (Xxxxxxxx et al., 2005). Se supone que la existencia de rendimientos crecientes conducen a la concentración del empleo en fábricas de mayor tamaño creando, de este modo, mercados mayores, los cuales, en presencia de los costes de transporte inducen a otras empresas a elegir la misma localización. La idea subyacente es que la interacción entre las economías de escala internas en la producción y los costes de transporte conducen a un proceso de auto-refuerzo de la aglomeración que surge cuando los agentes económicos se localizan cerca los uno de los otros (Xxxxxxxx, 1920).
En este sentido, hay por lo menos tres dimensiones sobre las que las economías de aglomeración pueden ser estudiadas. La primera es la dimensión industrial. Esto es, el grado en que las economías de aglomeración se extienden a través de las industrias.
Xxxxxxxxx (1974) afirma que las externalidades son más fuertes en algunos sectores que en otros, por lo que es razonable sugerir que las ganancias de productividad en regiones más densas se deben en parte a un cambio en la estructura de la industria. Xxxxxx y Xxxxxxx (2004) muestran que en las industrias de servicios, los pequeños establecimientos se localizan principalmente en las áreas aglomeradas, reforzando la creación de grandes urbes.
En el caso de la gran empresa, las multi-planta y de las multinacionales manufactureras, donde el know-how es un activo esencial, la mayoría de las empresas se oponen a la concentración geográfica con sus rivales por las pérdidas potenciales netas asociadas a la pérdida de información (Xxxxxx 1998;
Additional Economic Effects and Externalities in Transport Infrastructures
Xxxxxxxx y Xxxxxxxxx, 2000). De hecho, este fenómeno se observa en sectores altamente tecnológicos con un uso intensivo de información (Xxxxx y McCann, 2002; XxXxxx et al., 2002), así como sectores de fabricación más tradicionales, especialmente para empresas en el que la infraestructura de transporte sigue siendo importante en la decisión de localización.
La segunda dimensión es geográfica. La discusión de la aglomeración comienza con la idea de que la distancia geográfica es fundamental, ya que las economías de aglomeración se atenúan con la distancia; esto es, si los agentes están físicamente más cerca, entonces hay más posibilidades de interacción (Xxxxxx, 1983).
Xxxxxxxxx y Strange (2003) consideran que, en un modelo de creación de empresas, los impactos de empleo en la propia industria y sobre el empleo total dependen directamente del alcance geográfico de las economías de aglomeración. Xxxxxxxxx (2003) encuentra efectos de localización.
La tercera dimensión es temporal. Las economías de aglomeración no son un fenómeno estático y, es posible, que la interacción de un agente con otro agente en el pasado continúe teniendo efectos sobre la productividad en el presente. Esto significa que dos agentes que están separados temporalmente continúan afectándose el uno al otro y el grado en que estas interacciones están separadas en el tiempo definen el alcance temporal de las economías de aglomeración. Xxxxxxx et al. (1992) y Xxxxxxxxx et al. (1995) lo incluyen en su modelo de crecimiento y demuestran que las características de una ciudad puedan afectar su crecimiento durante un período superior a los veinte años.
Pero, en teoría, este tipo de estimaciones pueden verse afectadas por la existencia de simultaneidad cuya principal solución es el uso de variables históricas, un ejemplo, es el uso de la variable densidad de población retardada que es un instrumento del tamaño de la ciudad (Xxxxxxx y Xxxx, 1996). A excepción xx Xxxxxxxxx (2003) que estima las economías de aglomeración utilizando datos de panel a nivel de empresa con estimador GMM (Método Generalizado de los Momentos), Xxxxxxx y Xxxx (1996), Xxxxxxx (2002), Xxxxxxxxx (2003) y Xxxx et al. (2006) entre otros tratan la endogeneidad mediante la estimación utilizando mínimos cuadrados en dos etapas (MC2E) con variables instrumentales para predecir la densidad.
Xxxxxxx y Xxxx (1996), Xxxx et al. (2006), y Xxxxxx et al. (2006) instrumentan los niveles de densidad de empleo usando retardos sobre la
Additional Economic Effects and Externalities in Transport Infrastructures
densidad de población. Su tesis es que las densidades que observamos hoy se determinan por patrones previos de concentración de la población, que no están correlacionados con los niveles de productividad actuales. Por ejemplo, Xxxxxxx (2002) utiliza como instrumento la superficie total de las regiones de la Unión Europea, mientras que Xxxxxxxxx y Strange (2005) utilizan datos sobre las características geológicas argumentando que la variación en la densidad se debe a dichas características que no se correlacionan con la productividad, ni con las habilidades del factor trabajo.
Sin embargo, la evidencia indica que si la aglomeración tiene un componente endógeno, éste parece inducir un sesgo no sustancial en las estimaciones de aglomeración. De hecho, Xxxxxxx y Xxxx (1996) y Xxxxxxx (2002) encontraron cambios muy pequeños en la estimación de las economías de aglomeración utilizando variables instrumentales en lugar de estimador mínimos cuadrados ordinarios. Del mismo modo, Xxxxxxxxx y Xxxxxxx (2005) concluyen que la influencia de los regresores endógenos es pequeña, mientras que Xxxxxxxxx (2003) informa que la correlación entre las variables explicativas y el término del error es también insignificante.
En realidad, el problema de endogeneidad es muy difícil de abordar de manera satisfactoria, debido principalmente a las limitaciones de los datos disponibles. Esa es una de las razones principales por las que existe una línea de investigación actual que se centra en los incrementos de la accesibilidad como resultado de las mejoras en el transporte, (Xxxxxxxx y Xxxxxxxx, 2009, Xxxxx y Xxxxxxxxxx de 2001, Xxxxxxx y Xxxxxxxx, 2000; Xxxxxxxx y Xxxxx , 1993, Xxxxxxx y Xxxxxx, 2005, XxXxxxxx y XxXxxxxx, 2004; Xxxxxxxx, 2008).
Sin embargo, la mayor parte de estos trabajos siguen sin tratar la posible existencia de endogeneidad, ya que suponen la existencia de causas exógenas, tales como la presencia de grupos de presión político y dificultades orográficas o técnicas que impiden trazar una relación directa entre el diseño de la infraestructura, en el proceso de toma de decisiones, y la actividad económica de las regiones afectadas.
Los trabajos anteriores, además, usualmente simplifican el mundo real a uno en el que existen dos regiones conectadas por una infraestructura única, sin explicitar sus características. No tienen en cuenta que en un mundo más complejo, aumentos en la productividad dentro de la región estudiada pueden
Additional Economic Effects and Externalities in Transport Infrastructures
provenir de disminuciones en otras regiones debido a los cambios en la distribución espacial de la actividad económica.
Por lo tanto, esta línea de investigación se centra en los incrementos de accesibilidad que son incapaces de discernir si la correlación positiva entre aglomeración y productividad es una consecuencia de la aglomeración o, si la aglomeración, al mismo tiempo, es una consecuencia de la alta productividad.
Esta discusión muestra que las externalidades de aglomeración existen, sin embargo, su análisis se basa en que los datos de las industrias y áreas están usualmente agregados a nivel espacial y, en ocasiones, a escalas en las que la aglomeración no puede ser capturada. Por ello, Xxxxxx (2006) resume que para tratar empíricamente las economías de aglomeración se necesita de algunas propiedades deseables:
• El marco de modelización espacial debe evitar unidades predefinidas en áreas administrativas y debe permitir identificar la variación en las economías de aglomeración en una escala espacial pequeña. Un enfoque común es contemplar el empleo dentro de una cierta distancia, medida en términos de distancia o tiempo.
• La medida de aglomeración utilizada debe enfatizar la distancia o la densidad con el fin de incluir una dimensión de transporte.
• El análisis debe tener en cuenta una cobertura sectorial detallada.
• La estimación debería permitirnos aislar los rendimientos de la urbanización de los efectos a escala.
En virtud de las propiedades anteriores, los efectos de aglomeración pueden ser dependientes de la densidad efectiva y pueden ser definidas como la accesibilidad de cualquier empresa a cualquier industria localizada en un radio dado, lo que está claramente condicionado por la infraestructura de transporte.
Este hecho nos permite caracterizar la accesibilidad en términos de coste generalizado para capturar el efecto de las infraestructuras de transporte en la aglomeración. La existencia de más agentes en un radio dado puede exceder la capacidad de la infraestructura lo que también puede generar congestión del tráfico y reducir los beneficios potenciales de la aglomeración.
Las empresas, por tanto, consideran sus propios costes de transporte pero no si su uso de las infraestructura afecta a los costes de transporte de otras empresas.
Additional Economic Effects and Externalities in Transport Infrastructures
Hay, pues, un conjunto de fuerzas opuestas que determinan, de manera conjunta, el tamaño de las ciudades y de las aglomeraciones.
En consecuencia, el efecto de las economías de aglomeración depende del impacto del sistema sobre la densidad efectiva en las zonas afectadas, como una medida del tamaño de la economía. Por ejemplo, en el caso del empleo, el objeto de análisis no sólo debe ser el número de puestos de trabajo creados , sino también ha de tenerse en cuenta el número de puestos de trabajo destruidos.
Las infraestructuras de transporte, en ese sentido, pueden mejorar la densidad efectiva atrayendo empleos o reubicándolos. El resultado final será positivo si produce incrementos de empleo en las ciudades y negativos si fomenta la dispersión de la actividad económica. Esa es la razón por la cual el efecto final debe incluir todas las áreas incluso las que pueden sufrir dicha dispersión.
Teniendo en cuenta el argumento anterior, la movilidad del factor trabajo es crucial como se ha afirmado a lo largo de esta sección. En esta línea, Xxxxxxx y Xxxxxxxxx (2000) afirman que los mercados laborales más eficientes pueden producir diferencias persistentes en las tasas de desempleo, entre las regiones condicionadas a la movilidad del factor trabajo. Si existe, el trabajo se moverá hacia regiones con salarios reales más altos mientras que de lo contrario, las diferencias salariales persistirían y actuarían como una fuerza de dispersión debido al aumento de los costes de producción.
Sin embargo, la movilidad de los factores depende directamente de la legislación y la infraestructura de transporte. La provisión de infraestructuras a nivel regional pueden actuar como un promotor para la generación de economías de aglomeración locales (Xxxxxxxx, 1920). Xxxxxxxx (2007) muestra que la inversión en transporte puede fortalecer las externalidades de aglomeración disponibles para las empresas e inducir efectos positivos sobre la productividad incrementando de forma efectiva la densidad urbana.
Xxxxxxxx y Xxxxxx (2008) estiman el efecto que el crecimiento de carreteras ha tenido en la población y el empleo. Este análisis se ha desarrollado utilizando una aproximación de variables instrumentales basados en un plan estatal de carreteras diseñado en 1947 (utilizado anteriormente por Xxxx-Snow (2007) para analizar el efecto que la construcción de autopistas tiene en la población de las ciudades). Xxxxxxxx y Xxxxxx (2008) concluyen que un aumento del 10% en
Additional Economic Effects and Externalities in Transport Infrastructures
el stock de carreteras en las ciudades aumenta la población en un 2% y disminuye el porcentaje de hogares que carecen de recursos financieros.
Ahora bien, la movilidad de los factores, esencial para la creación de economías de aglomeración, se ve limitada por los problemas de capacidad de las infraestructuras de transporte. Cuando la demanda supera la capacidad máxima de la infraestructura, surge la congestión, externalidad negativa, que dificulta el desarrollo potencial de las economías de aglomeración. Además, las infraestructuras pueden quedar obsoletas, por razones tecnológicas o por el movimiento espacial de la población y de la actividad económica, lo que también reduce las posibilidades de generación de economías de aglomeración.
Xxxxxx (2007b) investiga la relación entre la productividad y la densidad de empleo, comparando dos medidas diferentes de la densidad: una en términos de distancia y la otra basada en el coste generalizado que, indirectamente refleja el efecto de congestión y, en consecuencia, la capacidad limitada de la infraestructura. El trabajo concluye que el crecimiento de la productividad se basa en economías de aglomeración urbana y que éstas pueden ser obtenidas tanto por el crecimiento del empleo como por la disminución de los tiempos de viaje subrayando el efecto negativo de la congestión en la creación de economías de aglomeración.
Resumiendo, cabe destacar la complementariedad entre la mejora de las infraestructuras de transporte y las economías de aglomeración. La aglomeración surge de la concentración de los distintos agentes económicos; consumidores, empresas o trabajadores y se transmiten a través de los procesos tecnológicos y los mercados de inputs, lo que genera beneficios positivos para los que se ubican juntos dando lugar a incrementos de productividad. Claramente, la movilidad de los factores es esencial para que los agentes se concentran y es allí donde la infraestructura de transporte juega un papel central.
Las economías de aglomeración están estrechamente ligadas a la existencia de un sistema de transporte eficiente que permita la movilidad de factores. Si no hay movilidad, no importa cuán eficiente es la infraestructura de transporte que no habrá economías de aglomeración y diferencias persistentes, en términos de salarios, pueden surgir entre las distintas regiones. Al mismo tiempo, si no hay un sistema de transporte eficiente, no importa cuán móvil son los factores que las infraestructuras de transporte afectaran dicha movilidad, lo que nos permite afirmar que existe una relación de complementariedad entre estos dos aspectos.
Additional Economic Effects and Externalities in Transport Infrastructures
La infraestructura de transporte, en particular, se caracteriza por su capacidad limitada, si la demanda supera dicha capacidad aparece la congestión, a partir de la cual las externalidades negativas, la congestión, afectan a los beneficios potenciales de aglomeración.
La competencia imperfecta
En relación a los efectos económicos adicionales relacionadas con las estructuras xx xxxxxxx podemos establecer dos: los efectos sobre los mercados en los que existe poder xx xxxxxxx y que usan el transporte como un input y los efectos sobre la competencia como resultado de la implementación del proyecto.
Por un lado, las empresas con poder xx xxxxxxx, que suponemos incapaces de discriminar precios perfectamente, fijan precios superiores al coste marginal, por lo que la cantidad demandada es inferior al óptimo social, lo que genera una pérdida de bienestar social, porque existen consumidores con una disposición a pagar por el bien superior al coste de producción pero que no pueden adquirir el bien.
Bajo este escenario, una disminución de los costes de transporte conlleva una reducción del precio xx xxxxxxx y un incremento en el nivel de producción que, a su vez, genera una reducción de la pérdida de bienestar. Aunque los consumidores no están dispuestos a pagar más que el precio de equilibrio, ni los productores están dispuestos a producirlo, existe un beneficio adicional que no es capturado ni en el excedente del consumidor, ni en el del productor y que coincide con la diferencia entre el precio y la cantidad por el incremento de la producción.
Es importante tener en cuenta que el efecto puede ser negativo si en los mercados secundarios en los que existe poder xx xxxxxxx, las empresas venden menos porque la reducción en los costes de transporte afecta positivamente un producto que es sustituto en los mercados secundarios.
Por tanto, bajo condiciones de competencia imperfecta, la valoración de los costes y beneficios a precios xx xxxxxxx no es apropiada, lo que puede llevar a la
Additional Economic Effects and Externalities in Transport Infrastructures
existencia de distorsiones en la localización de fondos y en la toma de decisiones sobre proyectos públicos, produciendo una asignación subóptima entre las distintas industrias. Xxxxxxxx y Xxxxxxxx (1999) estima que los beneficios económicos adicionales derivados de la competencia imperfecta podrían situarse en torno al 30% del total. Xxxxxxx (1997), por su parte, enfatiza que el coste de evaluar dichos efectos, por su complejidad, no siempre se ve compensada con la posible mejora de la estimación de los beneficios económicos.
Xxxxxxx (1997) señala que el efecto de la competencia imperfecta se debe a dos factores; el margen precio-coste y la elasticidad de la demanda. Xxxxxxxx y Xxxxxxxx (1999) asumen un margen precio-coste de 0,2, y una elasticidad de la demanda en la región de 2, mientras que Xxxxxxx (1997) establece valores de 0,05 y 0,5, respectivamente. Por tanto, el efecto de la competencia imperfecta, en este último caso, sería del 2,5%. Finalmente, DfT (1999), a nivel empírico, establece que los márgenes precio-coste en diversos sectores en el Xxxxx Unido entre 0,1 y 0,3.
Por otro lado, la implementación de un proyecto de transporte puede tener efectos sobre la competencia de los mercados en la región afectada. Esto es, cuando los costes de transporte son elevados, proyectos que los reducen pueden facilitar la entrada de nuevas empresas que encuentra rentable ofrecer sus productos en relación a la situación sin proyecto en la que el incumbente está protegido por las barreras a la entrada que le proporcionan los costes de transporte.
Este efecto de incremento de la competencia con la entrada de nuevas empresas se espera no sea sustancial en economías con infraestructuras de transporte maduras, ya que en estos países no se esperan incrementos significativos de la eficiencia derivados de la reducción de los tiempos de viaje por la intervención en el mercado de transporte. Sin embargo, este efecto podría ser más importante en aquellos proyectos que afecten a países o regiones que se encuentran aislados o con escasa conectividad, caso habitual de los países en vías de desarrollo.
Por lo tanto, se espera que la competencia tenga menor efecto en los países más desarrollados. Xxxxxxxx y Xxxxxxxx (1999) muestran que el impacto de la reducción de los costes de transporte pueden conducir a una mayor aglomeración lo que genera efectos desiguales en las regiones conectadas por la misma infraestructura. En el caso de una distribución espacial del tipo centro-periferia,
Additional Economic Effects and Externalities in Transport Infrastructures
la reducción de los costes de transporte puede promover la reorganización de la producción en la región central generando fusiones, adquisiciones o quiebras que permiten a las empresas restantes satisfacer una mayor demanda a un coste más bajo.
Siguiendo el argumento anterior, Elborst et al. (2010) muestran que los beneficios económicos adicionales en proyectos que vinculan a un núcleo y su periferia son mayores que en aquellos proyectos que enlazan dos regiones altamente urbanizadas. Las regiones periféricas suelen ser más pequeñas que la región central y suelen presentar estructuras xx xxxxxxx más propensas a la existencia de poder xx xxxxxxx. De este modo, la reducción de costes permite a las empresas de la región central, normalmente más eficientes por la presión competitiva de su mercado, abastecer a las regiones periféricas provocando una reducción del poder xx xxxxxxx de las empresas situadas en dichas regiones.
Ahora bien, este efecto no ha de confundirse con las ganancias de bienestar que surgen del incremento de la producción en los mercados con poder xx xxxxxxx, explicado anteriormente.
Los efectos medioambientales, los accidentes y la congestión
La Comisión Europea ha prestado atención a los efectos medioambientales de las actividades de transporte, redactando documentos y recomendaciones sobre la política de transporte, tales como European Commission (1995), que aborda principalmente los sistemas de precios más adecuados para internalizar los costes externos, o European Commission (2006) que se centra en el uso eficiente de la infraestructura.
En general, el objetivo final de todos estos documentos es internalizar los costes externos, para mejorar la eficiencia del sistema de transporte, garantizar la igualdad de trato entre los modos y mejorar la seguridad a la vez que los impactos ambientales negativos se reduzcan.
Las externalidades producen diferencias entre los costes privados (soportados directamente por el agente) y los costes sociales (soportados por la sociedad). Esto introduce incentivos perversos en la oferta y la demanda de
Additional Economic Effects and Externalities in Transport Infrastructures
transporte lo que genera una pérdida de bienestar. Bajo esta definición, el precio óptimo se establece cuando el coste marginal social y el ingreso marginal social son iguales, y en el caso de los costes de transporte, éstos pueden clasificarse en varias categorías:
• Costes derivados de la restricción de capacidad. Incluye todos los costes asociados con densidades de tráfico elevados.
• Costes de los accidentes. Cubren todos los costes directos e indirectos relacionados con los materiales, gastos sanitarios, policiales,…
• Costes medioambientales. Incluyen todos los costes medioambientales relacionados con problemas de salud, daños a la propiedad, daños a la biosfera y riesgos de largo plazo. Se trata principalmente del ruido, la contaminación del aire y el cambio climático o el efecto invernadero.
En cuanto al cambio climático, es necesario diferenciar entre varias consecuencias (Xxxxxxx, 2005):
• Aumento del nivel del mar. Implica la necesidad de protección adicional por la pérdida de humedales e incremento de tierras secas. Estos costes dependen de factores sociales y políticos que afectan las decisiones futuras en las que la protección está justificada.
• Consumo de energía. El impacto depende fundamentalmente de la temperatura, por lo que se ve claramente condicionada por un componente estacional de su demanda.
• Impactos sobre la agricultura. Dependen de los cambios regionales de temperatura y precipitaciones, así como de los niveles de dióxido de carbono atmosférico.
• Impactos en el suministro de agua potable. Dependen de los cambios en las tasas de precipitación y la evapotranspiración y los cambios en la demanda. La demanda de agua por los sistemas biológicos se ve afectada por factores climáticos, incluyendo la temperatura y la humedad.
• Impactos en la salud. Además de los efectos directos sobre la mortalidad que pueden ser muy pequeños, la propagación de enfermedades y epidemias podrían tener un impacto mucho mayor, sobre todo en las sociedades menos desarrolladas.
• Ecosistemas y biodiversidad. Se encuentran entre los efectos más difíciles de cuantificar y son uno de los efectos directos de la construcción de infraestructura.
Additional Economic Effects and Externalities in Transport Infrastructures
En el caso de la contaminación del aire, Xxxxxx (2003) distingue los efectos que alcanzan la estratosfera, la troposfera y la atmósfera. Según esta clasificación, los efectos ambientales globales están relacionados con las emisiones de gases en la troposfera y la estratosfera, mientras que las emisiones de contaminación local están relacionadas con la atmósfera que es la capa más cercana a la tierra. Con el objetivo de destacar su peligrosidad vamos a considerar, a modo de ejemplo, algunas de las emisiones más importantes. Por ejemplo, el óxido de nitrógeno, que afecta a la morbilidad y mortalidad humana, directa e indirectamente, a través del cambio climático, produciendo efectos negativas sobre la capacidad del sistema inmunológico, el óxido de azufre que afecta directamente al sistema respiratorio y puede causar enfermedades pulmonares y, el dióxido de carbono que surge de la combustión incompleta y que se emite, principalmente, por parte de la industria de transporte, afectando inevitablemente a la capa de ozono.
Este hecho abre la discusión entre cual de los modos de transporte es preferido, teniendo en cuenta los costes medioambientales. Desde este punto de vista, Xxxxxx (2003) señala que el avión es más dañino para el medio ambiente, en términos operativos, que los trenes de alta velocidad, debido principalmente a sus efectos sobre el cambio climático. Este resultado está en consonancia con INFRAS/IWW (2004) que alcanza la misma conclusión recogiendo una definición más amplia de las externalidades e incluyendo los efectos del ruido, la contaminación del aire urbano, los accidentes y los efectos del cambio climático.
Hay que tener en cuenta que la comparación entre ambos modos ha de considerar que los efectos medioambientales de la operación de los trenes de alta velocidad difieren en función de la procedencia de dicha energía. Sin embargo, la diferencia entre los modos se está reduciendo y se espera continúe esa tendencia. En este sentido, Xxxxxxxx (2009) y Xxxxxx (2004) obtienen resultados opuestos a los anteriores cuando incluyen los costes ambientales resultantes de la fase de construcción debido a que las infraestructuras de alta velocidad ferroviaria requieren, entre otros, un uso intensivo de maquinaria pesada altamente contaminante.
Otra fuente de externalidad es la reducción en el número relativo de accidentes y la congestión, que dependen fundamentalmente de la capacidad de la nueva infraestructura para desviar el tráfico de los modos alternativos.
Additional Economic Effects and Externalities in Transport Infrastructures
En el análisis de los efectos económicos de la nueva infraestructura hay que incluir las externalidades junto a los beneficios y los costes de construcción, operación y mantenimiento de la infraestructura.
Regulación de las externalidades medioambientales
Los agentes económicos demandan la emisión de sustancias contaminantes para crear actividad económica, por lo que éstos tienen disposición a pagar por la misma y un coste asociado a su reducción. Por tanto, la creación, en principio posible, de un mercado regulado a través de la definición de los derechos de propiedad es una solución factible.
Para ello, podemos considerar dos tipos básicos de regulación: cantidades y precios. En el primer caso, se trata simplemente de limitar la cantidad máxima de sustancias contaminantes que se pueden emitir, dado que los agentes tienen una disposición a pagar por cada unidad hay un mercado y un precio de equilibrio en el que dicho mercado se vacía. En el segundo caso, podemos considerar un precio máximo de modo que los agentes puedan emitir hasta el punto en el que éste se iguala con su disposición a pagar. En ese caso, el precio indirectamente fija la cantidad máxima de sustancias.
Bajo el supuesto de información perfecta, la regulación en precios y cantidades son equivalentes, Xxxxxxxx (1974). Sin embargo, la incertidumbre asociada a la emisión final de contaminantes hace que la regulación anteriormente propuesta no sea directamente aplicable.
Por ello, los gobiernos han creado un conjunto amplio de alternativas para elegir como controlar las emisiones de sustancias nocivas. Entre los instrumentos más destacados encontramos normas, impuestos y permisos de emisión negociables y su elección tiene implicaciones de eficiencia.
En un mundo donde los costes de reducción son inciertos, las medidas anteriores pueden producir un volumen de emisiones que se desvíe del óptimo. Un sistema de regulación de la cantidad máxima en el nivel de emisiones esperada genera un nivel de emisiones inferior (superior) cuando los costes de
Additional Economic Effects and Externalities in Transport Infrastructures
reducción son mayores (menores) de lo esperado mientras, un impuesto óptimo, por otra parte, induce niveles de emisiones superiores (inferiores).
Xxxxxxxx (1974) muestra bajo el supuesto de coste marginal de reducción (MAC) y beneficio marginal de reducción (MAB) lineales que el sistema cap- and-trade reduce los costes sociales esperados en mayor medida que el mecanismo de regulación por impuesto unitario siempre y cuando la pendiente del MAB sea mayor que la de MAC.
Por esta razón, diversos trabajos se han dedicado a buscar instrumentos que puedan reducir aún más los costes sociales esperados. Xxxxxxx y Xxxxxx (1976) muestran que un sistema cap-and-trade1 combinado con un precio máximo y subsidios sobre la reducción da lugar a un volumen de emisión más cercano al nivel eficiente ex-post que el que se alcanzaría bajo un impuesto por emisión o un sistema puro de cap-and-trade. A pesar de esto, el instrumento híbrido xx Xxxxxxx y Xxxxxx es de difícil implementación por su complejidad.
Xxxxx (1999, 2002) analiza una versión más simple, que consiste en un sistema de cap-and-trade combinado con un precio máximo, conocida como válvula de seguridad, y muestra que dicho instrumento reduce sustancialmente los costes sociales, en comparación con un sistema puro cap-and-trade o un sistema impositivo.
Otra forma de reducir los costes sociales esperados sería indexar la cantidad máxima a una variable correlacionada (Xxxxxxx, 2005; Xxxxxx y Xxxxx, 2006). La regulación indexada ha sido usada en otros contextos. Por ejemplo, algunos sistemas de derechos de emisión permiten a las empresas emitir una cantidad determinada por unidad de producción. Otro ejemplo es el tipo de sistemas de certificados verdes para la industria eléctrica que encontramos en Noruega, Suecia y en el Xxxxx Unido en la que se define el nivel objetivo (la cantidad de electricidad verde producida) como fracción del consumo total de electricidad. Por otra parte, en el contexto del cambio climático, las cuotas nacionales de emisión indexadas al PIB o población de los países se ha discutido como un medio para atraer a los países en desarrollo a un tratado sobre el clima, (Xxxxxxx et al. 1999, Xxxxxx, 2000 y Xxxxxxxx y Xxx Xxxx 2003).
1 Se trata de un sistema regulador o de control que fija un nivel de objetivo para las emisiones o el uso del recurso natural, y, después de distribuir las partes en ese orden, permite determinar su precio.
Additional Economic Effects and Externalities in Transport Infrastructures
Xxxxxxx (2008) apunta otra posibilidad para reducir los costes sociales que consiste en dividir los emisores en dos grupos y dejar que un grupo sea objeto de regulación mediante un sistema impositivo sobre las emisiones mientras que el otro, este sujeto a un sistema de cap-and-trade. Éste muestra que estos dos instrumentos van en direcciones opuestas a partir del volumen de emisión eficiente ex-post cuando los costes de reducción se desvían de los esperados y que, por ello, es posible encontrar una combinación de los dos instrumentos que reduzca el coste social incluso cuando los emisores en los dos grupos no enfrentan el mismo precio. Estos mecanismos teóricos presentados se enfrentan siempre a las dificultades de implementación mencionados anteriormente y serán abordados con más detalle en el capítulo 4.
El papel de los accidentes y la congestión en la evaluación de la infraestructura
Los accidentes representan un coste externo en términos del sistema de salud, seguridad y los daños a terceros. Incluso cuando los usuarios internalizan parte del coste pagando por el seguro sigue existiendo una externalidad.
Es decir, los usuarios tienen en cuenta algunos de los costes asociados con la posibilidad de tener un accidente, pero no todos, por lo que algunos de ellos se transfieren a la sociedad en su conjunto, dando lugar a un uso excesivo, de los modos de transporte afectados, desde una perspectiva social, lo que genera una pérdida de bienestar social.
Entre ellos destacamos la pérdida de vidas, cuyo valor se estima en la literatura como el valor de una vida estadística, consistente en la disposición a pagar por reducir la probabilidad de morir en un accidente de tráfico, la pérdida de bienestar para la familia y amigos, y otros costes entre los que incluyen daños a la propiedad de los activos físicos. El primer coste es el más importante y el que más atención ha recibido en la literatura.
Por lo tanto, la externalidad tiene dos orígenes. Por un lado, los agentes no consideran la pérdida de bienestar de familiares y amigos y los daños a los
Additional Economic Effects and Externalities in Transport Infrastructures
activos físicos y, por otra parte, la decisión del conductor individual afecta a la probabilidad de accidente para todos los usuarios de la infraestructura.
Desde un punto de vista empírico, hay varios trabajos que han cuantificado los costes externos de los accidentes de tráfico. En Elvik (2000), el coste para los países de la OCDE oscila entre el 0,5 y el 5,7% del PIB. Otros autores consideran que estos han sido sustanciales (Xxxxxxxx et al., 1996 y Xxxxxx, 1993). Sin embargo, Xxxxxxx et al. (1997) realizan un análisis de carácter microeconómico donde muestran que estos han sido sobreestimada en muchos casos, ya que suponen que el número de accidentes tiene una relación proporcional con el flujo de vehículos (ver Xxxxxxx 1968, 1969 y Xxxxxxx, 1987).
La congestión, a su vez, se produce por un desajuste entre la demanda o número de usuarios que desean utilizar una infraestructura o servicio en un momento dado y la oferta o capacidad de la misma para acomodar puntualmente a dichos usuarios que, además, rara vez es constante a lo largo del tiempo. Las consecuencias son incrementos de tiempo de viaje de los usuarios, esto es, el número de usuarios de la infraestructura de transporte tiene impacto sobre el tiempo de viaje individual y, por esta razón, la congestión puede considerarse como una externalidad en el sentido de que se genera por parte de unos agentes que no tienen en cuenta los costes que están imponiendo al resto de usuarios de la infraestructura.
Concretamente, la congestión podría diferir entre aquellas situaciones en las que la entrada a la infraestructura es libre y, por lo tanto, no existe ningún tipo de coordinación asociada con el uso de la infraestructura y aquellas infraestructuras donde la entrada está regulada mediante un sistema de adjudicación de slots, como es el caso de los aeropuertos. En el primer caso, el precio no juega ningún papel, mientras que, en el caso de que la entrada a la infraestructura esté regulada, la política de precios es crucial y puede ser utilizada no sólo para reducir el nivel de tráfico, sino también para transferir tráfico entre los períodos pico y xxxxx.
Otro problema de la congestión, desde el punto de vista de la política de transporte es conocer la elasticidad de la reducción de la congestión con respecto a la oferta de infraestructura. Este aspecto es importante para poder realizar un análisis coste-beneficio sobre la conveniencia de la infraestructura. Xxxxxxx (2002) muestra que los estudios que evalúan los efectos de la nueva
Additional Economic Effects and Externalities in Transport Infrastructures
infraestructura determinan elasticidades positivas aunque éstas varían considerablemente en valor absoluto.
La congestión y los accidentes de carretera están en última instancia interrelacionadas, ya que ambas son externalidades generadas por los usuarios de la infraestructura. Sin embargo, su relación no ha sido ampliamente estudiada. Xxxxxx y Xxxxxxxx (1997) y Xxxxxx (1994) estiman una relación indirecta entre la congestión y los accidentes, aunque estos estudios utilizan la densidad de tráfico como proxy de la congestión. Los estudios que utilizan variables de flujo son Belmont y Xxxxxx (1953), y Xxxxx y Xxxxxx (1982) que estiman una relación en forma de U. Otros artículos tales como Xxxxxx y Xxxxxx (1986) y Xxxxx y Xxxxxx (2003) han demostrado que la relación entre el flujo de vehículos y la gravedad de los accidentes es negativo.
En resumen, los beneficios asociados a la reducción de la congestión se espera que sean inferiores a los relacionados con la reducción de accidentes. El primero está principalmente dirigido por la relación entre la capacidad y la demanda de la infraestructura mientras que el segundo es más dependiente de las condiciones del tráfico de la infraestructura.
La estructura de la tesis es la siguiente; el capítulo 1 revisa la literatura existente a lo largo de los contenidos que serán abordados en el resto de capítulos y que incluye los efectos macroeconómicos sobre las regiones afectadas por la inversión de las infraestructuras de transporte, los efectos sobre los mercados de trabajo, las economías de aglomeración y los efectos sobre la competencia en los mercados de bienes y servicios, esto es, el conjunto de efectos económicos adicionales derivados de la inversión. Finalmente, en ese mismo capítulo, se contempla una revisión de la literatura sobre los principios de la regulación medioambiental y sobre la importancia que las externalidades negativas como los accidentes y la congestión tienen en la evaluación de las infraestructuras.
El capítulo 2 se centra en los efectos, a nivel regional, que la inversión en la red de alta velocidad española tiene sobre la densidad de empleo. Como ya se ha destacado previamente, la alta velocidad ferroviaria ha sido el modo de transporte escogido por las elevadas inversiones necesarias para su construcción que dada su magnitud cabría esperar que generen impactos significativos de la actividad espacial.
En el capítulo se realiza una panorama de la literatura sobre la densidad de empleo y las ganancias de productividad, y el papel que las infraestructuras
Additional Economic Effects and Externalities in Transport Infrastructures
juegan en su generación concentrándose en las características de la alta velocidad ferroviaria y su capacidad para cambiar la distribución espacial de la actividad económica. A continuación, se explica el proceso de recogida y tratamiento de los datos así como un análisis descriptivo de los mismos. Además, se detallan las aproximaciones econométricas utilizadas para cuantificar las relaciones entre las variables de interés.
Finalmente, se muestran los principales resultados desde las diferentes bases de datos y estimaciones econométricas; discutiéndose y cuantificándose la importancia de la alta velocidad ferroviaria española en el incremento de la densidad de empleo. Además, se presenta una discusión de los resultados y sus implicaciones en términos de políticas públicas.
El capítulo 3 incluye una revisión de la literatura sobre los conceptos de congestión y accidentes, enfatizando su relación con las infraestructuras de transporte considerando las especificidades del caso español, las fuentes de los datos y la metodología empleada para estimar los mencionados impactos prestando atención particular a la aproximación econométrica y justificar su conveniencia. Además, se calculan los beneficios sociales de los accidentes y la reducción de la congestión.
El capítulo 4 se ocupa de la regulación medioambiental y la propuesta de un mecanismo regulatorio que permite en condiciones de incertidumbre alcanzar niveles de emisiones más cercanas al óptimo social que los mecanismos alternativos propuestos en la literatura existente. En la siguiente subsección, se presenta nuestra propuesta y se identifican las condiciones bajo las cuales se reducen los costes sociales esperados en comparación con el resto de instrumentos considerados.
En el capítulo 5, se resumen las principales conclusiones extraídas del conjunto de los análisis presentados y las recomendaciones de políticas públicas que se desprenden de la investigación realizada.
Additional Economic Effects and Externalities in Transport Infrastructures
II. Objetivos
El objetivo de este trabajo consiste en contrastar diversas hipótesis sobre el impacto que las infraestructuras de transporte tienen sobre la actividad económica del país o región en el que se desarrolla. Las estimaciones empíricas presentadas se centran en la influencia de la alta velocidad ferroviaria en España, caracterizada por altos niveles de inversión durante las últimas dos décadas.
El primer capítulo presenta la revisión de la literatura académica relativa a la relación entre la inversión en infraestructuras y la existencia de efectos económicos adicionales y, el tratamiento de externalidades que no están recogidos en los ahorros de tiempo de los que se benefician los usuarios.
Se trata de una revisión de los trabajos existentes sobre los efectos económicos adicionales y los efectos medioambientales que la inversión en infraestructuras de transporte genera. El objetivo principal del capítulo es situar la investigación en el conjunto de los trabajos científicos previos, realizar un análisis crítico de la literatura existente e identificar los problemas metodológicos de la literatura para contextualizar nuestras aportaciones.
Los capítulos 2 y 3 están centrados en las aportaciones empíricas de la tesis. En el capítulo 2, el objetivo principal es cuantificar el impacto que la alta velocidad ferroviaria española tiene sobre las economías de aglomeración, medida como el efecto que la infraestructura tiene sobre la densidad de empleo a nivel municipal. De dicho análisis se derivan varios objetivos secundarios: en primer lugar, se estima el impacto de la inversión sobre las economías de aglomeración con el uso de estimadores de datos de panel dinámicos y variables instrumentales, lo que supone una aportación metodológica respecto a los trabajos previos recogidos en la literatura científica.
En segundo lugar, se construye una base de datos a nivel municipal, que permita descubrir los impactos de la infraestructura al nivel de agregación en el que las economías de aglomeración desarrollan todo su potencial. Este hecho nos permite aislar el impacto de la infraestructura sobre las regiones afectadas con el uso de técnicas de matching estadístico.
Additional Economic Effects and Externalities in Transport Infrastructures
Finalmente, se discute sobre si los efectos calculados previamente pueden considerarse efectos netos de la infraestructura o se deben a la simple relocalización de la actividad económica, siendo, por tanto, el incremento generado en una región, una pérdida en sus regiones adyacentes.
En el capítulo 3, el objetivo principal es cuantificar el efecto que la construcción de la alta velocidad ferroviaria ha tenido sobre la reducción del número de accidentes y los niveles de congestión en los corredores afectados por dicha infraestructura en España. Un objetivo secundario es la construcción de una base de datos que permita dicho análisis y, el uso de herramientas econométricas que permitan cuantificar el efecto directo entre las variables de interés y el cálculo final de los beneficios que éstos generan a lo largo de la vida del proyecto.
En el capítulo 4, se trata de determinar un mecanismo de regulación que de lugar a un resultado eficiente en la asignación de los recursos en el mercado de emisiones de sustancias contaminantes con problemas de información entre el regulador y el emisor. Para ello, hay que minimizar el coste social esperado de la política regulatoria y obtener mejores resultados que los planteados en la literatura. Los objetivos secundarios son los siguientes: en primer lugar, comparar el modelo alternativo planteado con los existentes en la literatura científica, en segundo lugar, establecer un modelo que permita ser simulado a partir de valores reales tal que pueda entenderse e interpretarse de la manera más gráfica y directa posible.
Additional Economic Effects and Externalities in Transport Infrastructures
III. Planteamiento
La inversión en infraestructuras de transporte afecta a la localización de la activad económica, y los gobiernos suelen invertir en infraestructuras dentro de la política de desarrollo regional.
Los proyectos de transporte son evaluados teniendo en cuenta los efectos sobre la accesibilidad, el medioambiente y la seguridad. Las evaluaciones estiman los beneficios sociales y los costes, relativos al caso base. Estos efectos sobre el bienestar incluyen ahorros de tiempo y mejoras de la fiabilidad y el confort, así como otros factores medioambientales.
Las guías y los métodos de evaluación están en constante desarrollo y esta tesis es parte, de algún modo, de esa evolución. Se centra en analizar la presencia y magnitud de algunos de los efectos económicos adicionales, que contribuyen al impacto de las actividades de transporte sobre la productividad y el PIB y surgen de la existencia de imperfecciones xx xxxxxxx. Esto implica que la valoración individual de los impactos difiera de la valoración social de los mismos.
Un supuesto básico de la evaluación de proyectos convencional es que el bienestar social generado por una mejora en el transporte es igual al valor del ahorro de tiempo de viaje. Esta aproximación, es generalmente una simplificación aceptable cuando no existen imperfecciones xx xxxxxxx. Sin embargo, los mercados son, en numerosas ocasiones, imperfectos y por tanto, es necesario capturar los efectos de dichas imperfecciones para alcanzar una evaluación completa que va más allá de los ahorros de tiempo de viaje.
El planteamiento de esta tesis es, por tanto, establecer métodos teóricos y empíricos que permitan cuantificar algunos de los efectos económicos adicionales que no son capturados en la evaluación de proyectos tal como, generalmente, se analiza en la práctica. Esta tesis identifica los principales impactos y emplea dichos métodos para su evaluación individual.
Additional Economic Effects and Externalities in Transport Infrastructures
IV. Metodología
La metodología de la tesis se distingue en base al capítulo analizado. El capítulo 1 se ocupa de la revisión de la literatura que contiene un trabajo exhaustivo de recopilación de información, y contextualización de la tesis con respecto a los estudios previos, mientras que los capítulos 2 y 3 contienen el análisis empírico y el capítulo 4, se centra en una aproximación teórica.
El capítulo 1 recoge el análisis de literatura de manera transversal a los temas tratados en la tesis, ocupándose de cada uno de los aspectos relevantes en la discusión de las infraestructuras de transporte y los beneficios económicos adicionales, así como la regulación medioambiental y las repercusiones que estos tienen sobre las políticas de transporte, concretamente para el caso de la alta velocidad ferroviaria española. En dicho apartado, el esfuerzo metodológico se centra en la capacidad de análisis y síntesis necesario para la recopilación de información y el tratamiento de la misma.
En el capítulo 2, se analiza el impacto de la alta velocidad ferroviaria sobre la densidad de empleo en las regiones que la poseen controlando no sólo la dimensión espacial del problema, sino también la dimensión temporal. Para ello, ha sido necesario el uso de herramientas econométricas y el uso de datos a nivel municipal.
La razón de tal nivel de desagregación se debe a que las economías de aglomeración, en la mayor parte de los casos, se generan a nivel local o regional puesto que está muy relacionado con los cambios en la accesibilidad que proporciona la nueva infraestructura.
Con el objetivo de controlar la naturaleza espacial de la alta velocidad en España sobre las poblaciones circundantes en términos de incrementos de la densidad de empleo, se utilizan herramientas de georeferenciación, tales como los programas SIG (Sistemas de Información Geográfica). Para ello, fue necesario georeferenciar las líneas de alta velocidad existentes y determinar las áreas de influencia.
En la actualidad, existen cuatro corredores principales de alta velocidad en España, aunque en el análisis se excluyó el corredor Este porque se completó en
Additional Economic Effects and Externalities in Transport Infrastructures
2010. Por tanto, se incluyen las rutas entre Madrid y Sevilla, Córdoba y Málaga y Madrid – Toledo (Corredor Sur), Madrid – Zaragoza – Barcelona y Zaragoza – Huesca (Corredor Norte) y Madrid – Valladolid (Corredor Noroeste), que conjuntamente conforman 18 estaciones y 1.665 kilómetros de alta velocidad.
Con el uso del SIG, establecimos de manera ad hoc círculos concéntricos alrededor de las estaciones de alta velocidad ferroviaria, con el objetivo de establecer áreas de influencia dentro de las cuales analizamos el impacto de las economías de aglomeración. El análisis se realizó para áreas de influencia con un radio de 10 y 20 kilómetros, no sólo para determinar si las estaciones de alta velocidad atraen empleo y actividad económica alrededor de las mismas, sino también para capturar el efecto dinámico espacial con el que determinar si los efectos, en caso de existir, son mayores cuanto más cercanos estamos de las estaciones.
Una alternativa sería incluir una variable que capturara la distancia del centro del municipio a la estación, pero el uso de datos de panel y efectos fijos eliminan esta posibilidad por tratarse de una variable constante en la componente temporal, razón por la cual, las estimaciones no son capaces de aislar su coeficiente. Además, la comparación entre las distintas áreas de influencia establecidas nos facilita la extracción de implicaciones de política, importantes en relación a la atracción de la actividad económica.
Las bases de datos usadas en la construcción de los datos de panel fueron el Anuario Económico Municipal de La Caixa y el Instituto Nacional de Estadística (INE). La primera consiste en un conjunto de datos estadísticos e indicadores económicos de cada uno de los 3.252 municipios españoles que superan los
1.000 habitantes a fecha 1 de enero de 2009 y cuya población total representa el 96.8% del conjunto del país. Los datos estadísticos incluyen datos sobre el número de trabajadores, obtenidos a través del Servicio Estatal de Empleo, la población y su composición e indicadores de la actividad económica (número de vehículos a motor, sucursales bancarias, actividades industriales, comercio minorista, mayorista,…). La segunda fuente nos proporciona acceso a datos de población pertenecientes a un periodo anterior (1986-1991) que habían sido recogidos por el INE para todos los municipios españoles.
Una vez construida la base de datos, el trabajo consiste en establecer una ecuación que pudiera ser estimada empíricamente y que fuera capaz de explicar la densidad del empleo, expresada en logaritmos, para los municipios analizados,
Additional Economic Effects and Externalities in Transport Infrastructures
diferenciado si éstos están o no bajo el área de influencia de la alta velocidad ferroviaria. Para ello, se construyó una variable dicotómica que toma valor 1 en los años de operación de la alta velocidad y 0, en otro caso. El análisis conjunto incluye el uso de variables de control que capturan la influencia de la renta y las condiciones socio-económicas a nivel municipal.
Una vez dichas variables han sido definidas se procede al análisis descriptivo de las mismas, y se calcula la media condicionada a la existencia o no de la alta velocidad ferroviaria con el objetivo de observar si existen diferencias significativas para ese momento de la distribución entre los municipios bajo la influencia de la alta velocidad y los que no lo están.
Con posterioridad se construyen dos muestras diferenciadas que darán lugar a aproximaciones econométricas ligeramente distintas. En una primera aproximación, consideramos el conjunto de municipios españoles incluidos en la base de datos distinguiendo únicamente por su pertenencia a un área de influencia de la alta velocidad ferroviaria, a través de la variable binaria anteriormente mencionada, mientras en la segunda aproximación realizamos un experimento pseudo-natural.
En este caso, usamos el subconjunto de ciudades con alta velocidad y las comparamos con un número seleccionado de municipios. La selección de este segundo subconjunto se realiza en base a un proceso de matching estadístico, tal que somos capaces de identificar a los mejores candidatos para la construcción de una futura e hipotética estación de alta velocidad por las similitudes con estos que ya tienen una. Una vez han sido identificados, construimos también una hipotética área de influencia con círculos concéntricos de 10 y 20 kilómetros como en la muestra original.
Esta aproximación nos permite realizar una comparación entre dos muestras similares, debido a la eliminación de los municipios que nunca podrían tener una estación de alta velocidad ferroviaria y que, por lo tanto, podrían distorsionar los resultados. Este hecho incrementa la efectividad de las variables dependientes o de control, limitando el sesgo en las estimaciones que podrían aparecer por el sesgo de selección.
Finalmente, la estrategia econométrica se divide en dos etapas. Primero, realizamos estimaciones econométricas usando datos de panel con efectos fijos. En segundo lugar, abordamos la estimación de datos de panel dinámicos que permiten el uso de variables instrumentales.
Additional Economic Effects and Externalities in Transport Infrastructures
En el capítulo 3, se aborda el impacto de la alta velocidad, una vez construida, sobre los accidentes y la congestión en las carreteras, a través de la desviación de tráfico de este modo. Durante la última década se ha invertido en nuevas infraestructuras, en especial, en la alta velocidad ferroviaria a pesar de lo cual la carretera tiene entorno a un 95% de la cuota xx xxxxxxx de pasajeros y mercancías.
Desde un punto de vista metodológico, es necesario averiguar el efecto de la alta velocidad ferroviaria sobre la carretera, en términos de velocidad y reducción de accidentes, para lo que se acomete un método de estimación indirecto.
Una vez conozcamos dichos impactos es necesario conocer el valor de una vida estadística y la valoración monetaria de los daños personales para calcular los beneficios de la reducción de accidentes y el valor del tiempo para los beneficios de la congestión.
En el primer caso, el valor estadístico de la vida se obtiene xx Xxxxxx et al. (2006) valorada en € 1,302,000 y que se incrementa con la renta de acuerdo a la elasticidad unitaria (Xxxxxx et al., 2006). Dado que el coste social de dicha externalidad es el valor estadístico de la vida por el número de accidentes y que, en la última década, se ha producido un descenso de los mismos, la evolución de dicho coste es incierta.
La congestión, por su parte, está altamente presente en los alrededores de las ciudades, tiene un importante componente temporal. A nivel agregado, la amplia red de carreteras españolas mitiga los impactos que podría ocasionar, en términos económicos. Sin embargo, el hecho que la alta velocidad ferroviaria y las autopistas se construyen en el mismo corredor nos permite predecir el impacto que la alta velocidad tiene y que podría ser significativo dentro del contexto español.
La congestión tiene lugar en determinados periodos del día (periodos punta) y su coste condicionada por dos aspectos, la velocidad media y el valor del tiempo de los usuarios afectados. En el caso de España, la velocidad de circulación está limitada en las autopistas (120 km/h) lo que nos permitirá conocer el tiempo de congestión usando la diferencia entre la velocidad teórica de la carretera y la real.
El otro aspecto que determina los beneficios sociales de la congestión es el
Additional Economic Effects and Externalities in Transport Infrastructures
valor del tiempo que incluye el conjunto de usuarios de un vehículo privado, conductor y pasajeros. El valor del tiempo depende, entre otros factores, del propósito del viaje, siendo mayor para viajes de trabajo que de ocio. El valor del tiempo para España ajustado por la paridad del poder adquisitivo y expresado en Euros de 2002 es 12.71 euros para viajes de ocio y 25.95 euros para viajes de trabajo (Xxxxxx et al. ,2006)
Además, hay que considerar que el valor del tiempo se incrementa bajo condiciones de congestión como resultado de la desutilidad adicional asociada a estas condiciones de tráfico. Así, Xxxxxxx (2001, 2004) considera que bajo circunstancias de congestión el valor del tiempo es 48% mayor que bajo condiciones de tráfico normal, Xxxxxxxx (2004) considera un factor de conversión de 1.5. La elasticidad entre la renta y el valor del tiempo en Europa es de 0.4-0.5 (Xxxx et al., 1996, Xxxxxxx and Xxxxxxx, 2004), y 1 (Xxxxxx et al., 2001).
Los datos sobre los niveles de tráfico en las carreteras afectadas por la construcción de la alta velocidad provienen de los Mapas de Tráfico del Ministerio de Fomento que nos permite conocer tanto el número de accidentes, los flujos de tráfico, la velocidad de circulación y otras características de las carreteras españolas, anualmente para el período 1999-2008. Un modo simple de aproximar el impacto de una nueva infraestructura de transporte sobre el número de accidentes sería, como se citó anteriormente, conocer el tráfico de carretera desviado y la elasticidad de accidentes de tráfico. Sin embargo, esta información no está disponible, así que el efecto tiene que ser calculado indirectamente.
La información descrita ha sido extraída de las estaciones de aforo de las autopistas que circulan de manera paralela a los corredores donde la alta velocidad está presente. La base de datos es más amplia para los accidentes que para la velocidad, ya que no todas las estaciones de aforo recogen datos sobre la velocidad de circulación.
La existencia de datos anteriores y posteriores a la implementación de la nueva infraestructura, y el uso de un conjunto de variables de control, nos permite construir un contrafactual. Éste consiste en comparar los niveles de accidentes y congestión antes y después del periodo del comienzo de funcionamiento del tren de alta velocidad en el corredor. Por tanto, la diferencia entre ambos periodos (antes y después) nos proporciona el impacto de la infraestructura sobre los niveles de accidente y congestión.
En el proceso de recogida de datos hay que tener en cuenta que existen
Additional Economic Effects and Externalities in Transport Infrastructures
estaciones de aforo en las que la velocidad establecida está por encima de la máxima permitida por lo que estás han sido eliminadas con el objetivo de evitar problemas de sesgo en las estimaciones.
Las variables de control utilizadas pretenden capturar los elementos principales que pueden afectar los niveles de accidentes y congestión, tales como el porcentaje de vehículos pesados en relación al total del tráfico, la existencia de puntos negros, el tipo de carretera, el esfuerzo inversor de la región, así como una variable binaria que toma valor 1 cuando la carretera está afectada por la existencia de la alta velocidad ferroviaria y 0 en caso contrario.
La estimación se realiza con 1.530 observaciones recogidas de las estaciones de aforo del Ministerio del Interior existentes en los Mapas de Tráfico. Ambas estimaciones muestran resultados similares y altamente robustos a especificaciones alternativas.
Por tanto, este simple modelo nos permite capturar la mayor parte de la variación de la variable endógena y nos muestra que el efecto de la operación de la alta velocidad ferroviaria es significativa sobre la reducción del número de accidentes.
El caso de la congestión es ligeramente diferente porque no se trata de una variable directamente observable así que tenemos que centrar nuestro análisis en los cambios de velocidad asociados a la introducción de alta velocidad ferroviaria como modo de transporte alternativo. Con la correspondiente estimación de dicho impacto, podremos transformar los cambios de velocidad en cambios en tiempo y valorar el efecto de la congestión.
El procedimiento es el siguiente; una vez conocemos los ahorros en términos de tiempo, tenemos que multiplicar por el valor de tiempo de los usuarios para transformarlo en unidades monetarias, bajo el supuesto que el 30% de los viajes se realizan por motivos de trabajo. Finalmente, tendríamos que determinar el número de pasajeros y el número de kilómetros que los usuarios conducen para lo que se supone que el factor de carga de los vehículos ligeros es
1.3 y el factor de desutilidad aplicado por causas de la congestión es 1.5. También, es necesario conocer el origen-destino de los pasajeros que están en el corredor de la alta velocidad ferroviaria, ya que no todos los conductores recorren la línea completa y por tanto, estos no están afectados del mismo modo por los problemas de congestión.
Additional Economic Effects and Externalities in Transport Infrastructures
En este caso y dada la ausencia de datos detallados a nivel de carreteras de origen-destino, utilizamos datos recopilados por la encuesta Movilia (Ministerio de Fomento, 2007). También se considera que los coeficientes de origen-destino son constantes a lo largo del tiempo y, por consiguiente, pueden ser aplicados al año 2010.
Finalmente, en el capítulo 4, la aproximación a la regulación medioambiental es teórica. El uso de herramientas matemáticas y el conocimiento de los modelos existentes permite la configuración de un conjunto de funciones matemáticas que interactúan entre sí y que, en este caso, caracterizan el mercado de emisiones de sustancias contaminantes. Con el objetivo de buscar la máxima simplificación posible en el análisis que, posteriormente, permitan sacar conclusiones directas sobre los parámetros de interés se ha optado por trabajar con funciones lineales.
Se propone un mecanismo de regulación alternativo a los propuestos de manera más reiterativa en la literatura, por lo que uno de los desafíos metodológicos es construir un modelo que permita la comparación de los resultados entre las distintas propuestas. De este modo, se estiman los valores de las condiciones de los parámetros bajo los cuales la alternativa propuesta, en esta tesis, es preferible a las alternativas existentes en la literatura
Dado que en estos modelos interactúan un gran número de variables y que, por tanto, en ocasiones aparecen interdependencia entre ellas se propone la realización de simulaciones con datos reales sobre el modelo planteado para conocer como éste se comporta bajo las distintas combinaciones de parámetros.
Additional Economic Effects and Externalities in Transport Infrastructures
IV. Aportaciones originales
Los efectos económicos adicionales no pueden descartarse aunque estén lejos de tener una magnitud similar a los beneficios directos como los ahorros de tiempo. Los beneficios económicos adicionales, que son ignorados en una evaluación convencional, reflejan la existencia de imperfecciones en el mercado.
En el caso de las economías de aglomeración, éstas dependerán del impacto de la densidad efectiva, en términos de empleo, de las áreas afectadas. La densidad efectiva del empleo es una medida del tamaño económico de una localización que describe el nivel de aglomeración, a través del número de empleos. En este sentido, la tesis permite establecer una relación entre las infraestructuras de transporte y la densidad de empleo y aporta un mecanismo novedoso de estimación con el uso de datos de panel y el uso de efectos fijos que permiten aislar de manera nítida dichos efectos.
Finalmente, se propone un mecanismo de regulación de emisiones de sustancias contaminantes que alcanza mejores resultados que las propuestas en la literatura en un contexto de asimetrías de información entre el organismo regulador y los emisores de sustancias contaminantes. De este modo, se reduce la pérdida de bienestar esperada de los sistemas regulatorios propuestas para un amplio rango de parámetros. En este último caso, la aportación no es metodológica porque el modo de resolución del problema es estándar, consistiendo en el mecanismo de regulación propuesto.
Additional Economic Effects and Externalities in Transport Infrastructures
V. Conclusiones obtenidas
La revisión de la literatura presentada ha puesto de manifiesto la necesidad de realizar mejoras en el tratamiento de los datos, la falta de datos comparables y fácilmente medibles, y los problemas metodológicos de gran parte de los trabajos empíricos existentes. Por ello, es necesario que la investigación siga avanzado para determinar los efectos económicos adicionales netos que nacen con la inversión de infraestructuras de transporte y que no son, siempre, incorporados a la evaluación coste-beneficio convencional.
En el análisis de los impactos que la alta velocidad ferroviaria tiene sobre la densidad de empleo y, por extensión sobre las economías de aglomeración, se realiza una comparación e interpretación en las dos áreas de influencia que han sido establecidas de acuerdo a lo explicado previamente en el apartado metodológico. Esta comparación se realiza desde dos dimensiones diferentes, comparando las bases datos, con y sin matching estadístico, para una distancia dada o comparando la misma base de datos para distintas distancias. Por un lado, se observa que la base de datos de municipios homogéneos elimina el sesgo de selección y proporciona un impacto más bajo a la construcción de la alta velocidad que la base de datos con el conjunto de municipios españoles.
Por otro lado, se demuestra que hay un descenso en el impacto que la alta velocidad ferroviaria tiene sobre las regiones circundantes a medida que se alejan. Esto es, la construcción de una infraestructura de alta velocidad incrementa la densidad de empleo alrededor de la estación de la alta velocidad, pero su impacto disminuye cuando nos alejamos del epicentro.
Si contextualizamos los resultados en relación a la literatura, hay que tener en cuenta que incrementos en la densidad de empleo son únicamente significativos cuando estos se trasladan a incrementos en la producción o productividad. En el presente trabajo, las estimaciones muestran que la existencia de la alta velocidad ferroviaria española proporcionan un incremento en la densidad de empleo del 3.6-4.7% si el área de influencia se extiende a los 10 kilómetros y 1.8-3.7% en el caso de los 20 kilómetros. Este resultado podría significar mucho o muy poco.
Additional Economic Effects and Externalities in Transport Infrastructures
Dado los coeficientes presentados y sabiendo que el efecto se desvanece a medida que se incrementan las áreas de influencia debemos atender a la posible relocalización de la actividad económica, no sólo entre áreas de influencia sino en el seno de las regiones. De este modo, los hinterlands o epicentros de nuestro análisis (esto es, las estaciones de alta velocidad ferroviaria) reciben los beneficios sociales de la construcción de la infraestructura pudiendo afectar al desarrollo de otras regiones.
Podría argumentarse que los coeficientes estimados se deben al efecto multiplicador keynesiano del gasto público que nace de la inversión pública realizada y que, en principio, surgen con independencia de la naturaleza de dicha inversión. Sin embargo, la variable alta velocidad ferroviaria, toma el valor 1 únicamente en el período de operación del nuevo modo de transporte, evitando la posibilidad de que éstos efectos provinieran del periodo anterior.
Por otro lado, las estimaciones podrían verse afectados por la tendencia económica de los municipios, lo cual podría llevar a errores de magnitud en los resultados. Esto es, la existencia de dos municipios con tendencias divergentes en el tiempo que se vieran potenciadas por la introducción de la nueva infraestructura podría llevar a una sobreestimación de los efectos sobre la densidad del empleo. Sin embargo, el uso de un estimador de efectos fijos o intra-grupo y la comparación entre municipios con similares características mitigan estos inconvenientes.
El punto más controvertido, y de mayor trascendencia para la política pública, es discutir si los efectos capturados están relacionados con incrementos netos en la densidad de empleo y la actividad económica o si se deben a la relocalización de la actividad económica ya existente.
Nuestra explicación es la siguiente; las estimaciones econométricas presentadas no pueden distinguir entre las dos posibilidades. Consideremos dos regiones idénticas antes de la construcción de la línea de alta velocidad ferroviaria, esto es, con la misma densidad de empleo y población. La decisión de inversión es, por tanto, exógena y aleatoria, ya que la estación podía haberse construido en cualquiera de las dos ciudades. Ahora bien, las estimaciones no pueden distinguir entre la creación neta de actividad y la potencial relocalización de la misma entre las regiones. Si como resultado de la inversión en la alta velocidad ferroviaria, la región con la infraestructura incrementa la densidad de empleo, mientras la otra región no se ve afectada; podemos afirmar que el efecto
Additional Economic Effects and Externalities in Transport Infrastructures
estimado se debe a la creación neta de actividad generada por la nueva infraestructura. Sin embargo, si la infraestructura de transporte generara transferencia de puestos de trabajo entre regiones, produciendo la relocalización de la actividad económica; la diferencia entre densidades, esto es, el impacto estimado sería superior a la creación neta de empleo.
De este modo, los efectos estimados sobre el empleo que surgen de las economías de aglomeración por la construcción de la infraestructura no proporciona información relevante sobre la creación final de los efectos netos. El problema que surge, por tanto, es que los incrementos en la densidad del empleo y la productividad no pueden ser transferidos directamente a los beneficios de la infraestructura. En nuestro caso, no obstante, hay algunos indicadores sobre el posible impacto de la relocalización. A partir de la comparación de las áreas de influencia para la misma muestra podríamos inferir que la relocalización de la actividad económica está presente entre el epicentro y el círculo concéntrico a favor del primero. Sin embargo, no podemos analizar la relocalización esperada entre actividades; esto es, la redistribución industrial. Por ejemplo, el incremento de la actividad relativa a la alta velocidad ferroviaria podría tener efectos sobre otros modos de transporte; el autobús o las aerolíneas como modos de transporte alternativas se verían afectados negativamente así como sus actividades auxiliares.
Con relación al efecto que la alta velocidad ferroviaria tiene sobre la reducción de los niveles de congestión y accidentes, la incertidumbre asociada a la elasticidad cruzada de la demanda entre modos y, consecuentemente, el volumen de tráfico desviado de la nueva infraestructura desde modos alternativas impide el conocimiento directo de los beneficios sociales derivados de la reducción de los accidentes y la reducción de la congestión.
Sin embargo, la posibilidad de comparar el corredor antes y después de la introducción de una nueva infraestructura, controlando por un número de características nos permite estimar el impacto que la infraestructura de la alta velocidad ferroviaria tiene sobre el tráfico de carretera en términos de incrementos de velocidad y reducción de accidentes. Por tanto, este mecanismo indirecto nos da la oportunidad de calcular los beneficios previamente mencionados.
En el caso de la reducción de accidentes, éstos representan alrededor del 5% de los beneficios totales del tren de alta velocidad, mientras que la reducción de
Additional Economic Effects and Externalities in Transport Infrastructures
la congestión por carreteras derivadas de la creación de la red de alta velocidad representa el 0.03%.
En la cuantificación de los costes de la congestión hay que tener en cuenta que la demanda de transporte no es homogénea a lo largo del día por lo que un análisis más detallado que contemple esta condición podría estimar coeficiente ligeramente mayores que los obtenidos en este trabajo. Otro aspecto a considerar es que los resultados están sujetos a incertidumbre sobre la futura relación entre las variables, tales como el crecimiento en el valor del tiempo o el valor estadístico de la vida. En este sentido, los cambios significativos de cualquiera de estas variables pueden alterar los resultados significativamente. No obstante, todos los supuestos han sido realizados considerando la situación más favorable para el proyecto.
En el capítulo 4 se estudian las propiedades de una política de regulación en el que un grupo de emisores están sujetos a un impuesto por emisión y los otros están protegidos por un sistema de cap-and-trade y donde el impuesto de los primeros está indexado al precio del sistema cap-and-trade. Con tal política, el nivel impositivo se actualiza con respecto a la función de reducción de costes marginales del sector sujeto a la regulación cap-and-trade. El capítulo concluye que una política de indexación linear proporciona mejores resultados en términos la política de regulación estudiada que Xxxxxxx (2010) siempre que la covarianza entre los shocks de la función de costes, a la que se enfrentan los dos grupos sea distinta xx xxxx. Mientras que la política de indexación propuesta ofrece mejores resultados que una economía sujeta a una regulación por cantidad o por precio en base a un conjunto de parámetros más amplio que la política mixta.
Por lo tanto, en aquellas economías, como la de la Unión Europea, en la que se combina una regulación basada en sistemas mixtos de precios y cantidades, el regulador puede reducir la ineficiencia esperada indexando los impuestos sobre las emisiones al precio que se establece en los mercados en los que se regula por cantidad. No obstante, las ganancias netas esperadas son pequeñas, al menos para el caso en el que las funciones de costes y beneficios sobre la reducción de emisiones sean positivas. Hay también que destacar que nuestro análisis no incluye supuestos, ni condiciones sobre la importancia potencial de su implementación, ni sobre las creencias a priori sobre la relación de la covarianza y los shocks de sus costes sobre los diferentes sectores.
PARTE II
TESIS DOCTORAL EN LENGUA INGLESA
Additional Economic Effects and Externalities in Transport Infrastructures
Chapter 0. Introduction
Transport infrastructure policy is often used to promote economic growth. This dissertation tackles the connection between infrastructure investment and wider economic effects, not captured by savings of user’s time. Transport investments generate indirect effects that arise from imperfect markets with complementarity or substitution relation with the market where the investment is undertaken. Moreover, investments interact with economic growth, input and product markets, externalities and the spatial distribution of the economic activity (agglomeration economies).
Under perfect competition, price equals marginal cost and direct benefits of users affected by the investment equals benefits of the project (Xxxxxxx, 1973 and Xxxx-Xxxx, 1986). This is utopic and we should also consider indirect and wider economic effects.
This dissertation aims to develop, theoretically and empirically, the previous research lines. We review the literature, as an essential part of this dissertation, and we focus on three original research. First, we examine, at empirical level, the impact that the construction of the Spanish high-speed rail has on employment density in the regions affected by the infrastructure. Second we discuss the impact of the Spanish high-speed rail on the reduction of road congestion and accidents because of the diverted traffic from roads to the high- speed network. Third, we examine the mechanisms of carbon markets regulation and we propose an alternative regulation generating improvements in the social welfare in a context of imperfect information.
This dissertation is organized as follows: in chapter 1, we review the literature including macroeconomic effects and convergence between regions derived from infrastructure investment, the effects on labour markets, the economies of agglomeration, and the effects on imperfect competitive markets. Lastly, chapter 1 addresses the relationship between environmental effects, accidents and congestion, the regulatory framework, and the role that accidents and congestion play in the assessment of the infrastructure.
Chapter 2 focuses on the regional effects of investment in the Spanish high- speed rail network, especially the impact on employment. It starts with a brief
Additional Economic Effects and Externalities in Transport Infrastructures
introduction about the role played by infrastructure on employment density and productivity gains, focusing on the characteristics of high-speed rail and its ability to change the spatial distribution of economic activity. We then explain how we collect and process data, and we give a descriptive analysis. We detail the econometric approach chosen to quantify the relationships between the variables of interest. Lastly, we show the main results from the different databases and econometric estimates, and discuss and quantify the relationship between the Spanish high-speed rail system and employment density.
In chapter 3, we review the literature of congestion and accidents, emphasizing their relation with transport infrastructure. We consider the specific Spanish case and the data sources and methodology used to estimate those impacts, paying particular attention to the econometric approach and its justification. We then calculate the social benefits of accidents and congestion reduction.
Chapter 4 deals with environmental regulation and the proposed regulatory mechanism that allows uncertainties in order to establish an optimal solution preferable to those proposed in the literature. We begin with a review of state of the art, then describe the model and summarize some of its results. We present our proposal and identify the conditions under which the expected social costs are reduced compared to the rest of instruments considered (a tax on emissions, a cap-and-trade system and the optimal combination of the two).
The last chapter of this dissertation sets out the main conclusions and some policy recommendations that follow the analysis.
Additional Economic Effects and Externalities in Transport Infrastructures
Chapter 1. Literature Review
1.1. Introduction
Transport infrastructure policy is broadly used to promote economic growth. This dissertation tackles the connection between infrastructure investment and wider economic effects, not usually captured in the economic appraisal of investment projects. Transport investments generate indirect effects that arise from imperfect markets with complementarity or substitution relation with the transport market where the investment is undertaken. Transport activities interact with economic growth, input markets, product markets, externalities and the spatial distribution of the economic activity (agglomeration economies) that will be analysed in the dissertation.
This chapter aims to review the effects of transport infrastructure investment on economic activity. We focus on those impacts, not usually considered in a traditional appraisal, such as agglomeration economies, effects on imperfect competitive markets and environmental effects, among others.
This chapter has as its starting point impacts at microeconomic level, though it is obvious that the magnitude of infrastructure investment may have effects on aggregate variables, such as GDP, economic growth,... In fact, governments historically consider the construction or upgrading of transport infrastructure as a tool for enhancing economic activity
Public capital investment is often used to provide a short-term boost to the economy, except when it crowds out more productive investments, because construction activities have a rapid pass-through and a large employment multiplier. This is called a Keynesian effect and is, in principle, common to all possible alternative investments; therefore, the policy question should be how to find the best way of spending public funds on infrastructure.
To evaluate its contribution to society, economists classify the impact of a new project into direct, indirect and wider economic effects. Direct effects arise from the primary market, where the intervention occurs. Indirect effects stem from markets whose products are complements to or substitutes for the primary
Additional Economic Effects and Externalities in Transport Infrastructures
market, and the price differs from the marginal cost. Lastly, wider economic effects include the remaining impacts that may be important, such as agglomeration economies, effects on imperfect competitive markets or location effects.
Assuming that markets are perfectly competitive, or price equals marginal costs, we could appraise a project ignoring indirect effects2, but the impact of a transport system cannot be limited to its direct effects. We should include intermodal effects, environmental effects, distortions at macro and micro level in the labour markets derived from agglomeration economies, which have effects on productivity, and other directly imposed external costs.
Regarding the effects on productivity of public capital in general, and of transport infrastructure in particular, there are many contributions that provide a range of results, and face some methodological problems, not fully solved. To some extent, the role of public capital is uncertain; on one hand, it may be a substitute for or a complement to labour—it may crowd out private investment or induce more private investment, affecting positively employment levels. On the other hand, labour markets are also affected directly through the transport infrastructure.
Transport infrastructure may generate larger and more efficient labour markets if there are perfect mobility and complete information. Workers would have complete information and would choose their jobs optimally, improving the matching between workers and firms, which generates productivity gains.
The spatial dimension is relevant under the assumption of perfect mobility. In fact, changes in transport infrastructure and service provision affect the location of firms, changing their accessibility to labour, input or good markets, which increase productivity levels. There is, therefore, a potential dynamic gain, known as agglomeration economics and included in the wider economic benefits.
Agglomeration economies are based on increasing returns to scale in the spatial dimension, and arise from different sources, such input markets or technological spillovers. Agglomeration economies are positive externalities generated by economic agents when they are located closer to each other, and transport is essential to promote them. In this sense, transport facilities and
2 There are different procedures for appraising a project. Cost-benefit analysis is the one to which we refer in this document, but there are other alternatives, such as cost-effectiveness or multicriteria analysis.
Additional Economic Effects and Externalities in Transport Infrastructures
services have an important influence on a city’s accessibility and the trade barriers between regions that, in the end, determine the location of firms, consumers and workers.
Agglomeration economies are also closely related to imperfect competition through transport infrastructure. Isolated markets, these where transport is not developed, are likely to be less competitive. The role of transport infrastructure is clear: the improvement of connectivity reduces the transport costs and new opportunities or threats appear for incumbent operators, increasing the market competitiveness. The final result is a reduction of market power and an increase of social welfare.
Lastly, we must include the externalities, in general, and the environmental effects, in particular, that also determine transport policy. Given their importance, environmental effects will be considered, in this dissertation, separately because the provision of transport services and the construction of infrastructure depend on environmental regulation, especially regulations of CO2 (carbon dioxide) emissions.
The atmosphere disperses the pollutants associated with global warming around the world regardless of the place where they are emitted. The environmental regulation is central in the discussion of emission consequences and how they evolve, and affect the appraisal of transport policies.
This chapter is organized as follows. In Section 2 we review macroeconomic effects and convergence between regions, highlighting the long- term effects.. Section 3 reviews the impact of infrastructure on the labour market and Section 4 the role of agglomeration economies. Section 5 is devoted to discuss the effects of transport infrastructure on imperfect competition. Lastly, Section 6 describes the environmental impacts, emphasising the role of accidents and congestion.
1.2. Macroeconomic effects and convergence between regions
Public investment is a powerful mechanism for enhancing economic growth and employment in the short-run. However, the final effects are not always the
Additional Economic Effects and Externalities in Transport Infrastructures
expected effects and the possible crowding out effect on more productive investments should not be ignored.
Xxxxxxxx (1989) assesses the responsibility of the government in the economic growth and productivity improvement, giving importance to the public investment. His paper is the seed for a large body of literature focused on exploring the links between aggregate levels of infrastructure investment and economic performance measured by GDP, productivity growth or employment.
Considering the infrastructure as an input in the production function, Xxxxxxx (1990a) finds positive effects of public investment on output and economic growth stating that the productivity slowdown of the US was because of a decline in the growth of public infrastructures. However, other papers report opposite results. Some suggest that the marginal product of public capital is higher than the marginal product of private capital (Xxxxxxxx, 1989; Xxxxxxx, 1992); others say that is approximately equal (Xxxxxxx 1990b); others find that is lower than the marginal product of private capital (Xxxxxx, 1986; Xxxxx-Xxxxx, 1994), and some authors find that the marginal product of public capital is even negative (Xxxxx and Karras, 1994; Xxxxxx and Xxxxxx, 1991).
Xxxxxxxx (1994) argues that the wide range of estimates arises from a list of potential statistical problems, such as endogeneity between productivity and public capital, a spurious correlation due to non-stationary series, or the omission of relevant variables. The endogeneity and the direction of causality are not easily detected statistically3; public infrastructures may both follow and lead economic growth. To sort out it, several incomplete empirical solutions are implemented; the most common is the use of panel data.
Panel data allow the use of leads and lags. But, there may be lags in both directions; on one hand, agents need time to adjust to infrastructure changes, and, on the other hand, output growth need time to generate a minimum demand threshold that justifies the new infrastructure. Moreover, some leads should be considered if agents have expectations about future changes in transport infrastructure. All these caveats introduce confusion and difficulties into the econometric estimation, which partly explains the wide range of results (Jiwattanakulpaisarn, 2008).
3 Xxxxxx (1991) discusses this question in detail.
Additional Economic Effects and Externalities in Transport Infrastructures
There are also two other disadvantages of macroeconomic analyses. First, the measurement of variables may be problematic. The stock of infrastructure is an imperfect variable to measure the effectiveness of transport services and, therefore, its influence on productivity. Second, macro elasticity is useless to take individual decision about a project because it is context-specific—both in type (line or point infrastructure, etc.) and in its position within the network. Consequently, the spatial dimension needs to be discussed.
Investment in one region depends on local conditions, existent transport modes and the infrastructure provision in other regions. The construction of a new infrastructure, in fact, does not guarantee a better performance in the region where is built. Dispersion forces may lead to a delocalization of firms, reducing the expected benefits of the infrastructure.
We can ignore these effects, assuming perfect competition and constant returns to scale in the spatial dimension but these assumptions do not hold because the nature of infrastructure. The traditional modelling rarely considers the spatial dimension and it does not capture the effects on labour markets and on the competitive structure between (within) regions. This is the main argument for the development of the so-called new economic geography4,5.
It considers that transport costs are crucial; they act as a barrier to entry, limiting the capacity of infrastructure to produce concentration and specialization forces. For example, if there is a fall in transport costs between two regions with high transport costs, this may end up generating a new two-way trade. The final result will, in practice, depend on how large these regions are, how mobile their factors (especially labour) are and how low transport costs must be to produce a flow of activity between the two regions.
On one hand, assuming non-mobility for labour between regions and intermediate transport costs, Xxxxxxx and Venables (1995) show that large populated regions benefit from infrastructure improvement as most of economic activity concentrates in these regions. This, at the same time, generates differences in real wages. However, an additional fall in transport costs could make less important for firms to locate close to large markets and low real wages
4 See Xxxxxx et al. (1999) and Xxxxxx and Xxxxxx (2002) for a discussion of new economic geography.
5 The assumption of increasing returns to scale is essential for agglomeration economies. Starret (1978) shows that agglomeration of activities cannot occur in a world of pure and perfect competition where space is homogeneous – a theory that is known as the “theory of spatial impossibility”.
Additional Economic Effects and Externalities in Transport Infrastructures
of the smallest region could attract firms that would then become net exporters. On the other hand, assuming labour mobility between regions, Xxxxxxx (1991) finds that is possible that all industry concentrates in one region.
Previous models are based on only two sectors per region, which is somewhat unrealistic. Xxxxxxxx (1999) extends the model to a continuum of imperfectly competitive sectors, and shows that there is not only one equilibrium outcome in the industry location. This implies that two identical regions do not necessarily take half of the market share and the final division depends on trade barriers and transport costs. Xxxx (1999) explores the same connection between transport costs and trade. He shows that industries locate close to consumer demand and spread across regions when transport costs are high, while they concentrate when costs are intermediate.
In short, considering labour mobility, workers move to locations with higher real wages, whilst the lack of mobility induces industries to spread out, leading to similar results to the described by Xxxxxxx and Xxxxxxxx (1995).
The difference in real wages between regions may be a consequence of productivity gains derived from agglomeration economies. Xxxxxxxx (2007) formalizes this argument, and shows that estimates of the elasticity of productivity with respect to agglomeration can be used to shed light on the magnitude of this effect. His theoretical model links productivity to transport investment considering effects on city size. His objective is to distinguish changes in the impacts on productivity (agglomeration) arising from transport infrastructure investment derived from resources saved in commuting and from an increase in urban output.
We must take into account that transport infrastructure investment, conditioned largely by technological characteristics, is not the only element to change the spatial dimension of the economic activity. There are also other variables with greater influence on activity relocation, such as the relative prices of production factors between regions or the economic-financial condition (Xxxxxxxxx, 1991).
From the discussion above, we can establish that it is not possible to apply a common rule to know the final effects of a new infrastructure. But, we have discussed the role of transport costs, and conclude that the time savings derived from transport infrastructure improvement or construction do not always generate
Additional Economic Effects and Externalities in Transport Infrastructures
regional convergence, because the final results depends mainly on the initial levels of transport costs and on the mobility of factors.
1.2.1. The long-term effect and convergence between regions
We focus on the effect of public investment on infrastructure in the long run, and its capacity to achieve regional convergence. To discover whether public capital is productive, it is not enough to show that the public investment will stimulate long-term growth. At least three considerations must be addressed.
First, we must consider whether a permanent increase in public investment induces a permanent, or a temporary, increase in economic growth. The neoclassical growth model of Xxxxx (1956) predicts that any positive effect on economic growth of an increase in the national savings and investment rate is transitory; the steady-state growth rate is fully determined by population growth and exogenous technological progress. In this setting, an increase in spending on productive public capital projects induces a period of temporarily high investment, but the pace of capital accumulation, and of economic growth slow over time as the accumulation of capital diminishes the return to capital and the incentive for further investment. In the long run, the level of output is higher but the growth rate of output returns to the same level as it was before the public spending initiative.
Second, the effect of an increase in public investment on economic growth is likely to depend on the relative marginal productivity of private versus public capital. An increase in public investment raises (lowers) the economic growth rate depending on whether the marginal product of public capital exceeds (is exceeded by) the marginal product of private capital. This consideration validates the concerns of Xxxxx (1990); the range of empirical estimates of the output elasticity of public capital is too large to be informative to the public policy.
Third, the effect of public investment on growth is likely to depend on how the increased spending is financed. Empirical studies such as those of Xxxxx and Xxxxxxx (1996) find evidence that increases in tax rates reduce the rate of economic growth. An increase in public capital, which, in most cases, will require an increase in tax rates, will stimulate economic growth only if the productivity impact of the public capital exceeds the adverse tax impact.
Additional Economic Effects and Externalities in Transport Infrastructures
Concretely, in the case of Spain, during the 80s and 90s, the percentages of GDP devoted to public investment in transport infrastructure in Spain and Germany were the highest in the European Union (EU), and the contribution of this public investment to growth was high enough to continue this expansive policy (Mas et al., 1996). However, the investment is far from decreasing progressively and today the percentage doubles the EU average what, following the neoclassical theory, has led to a decrease in growth (Mas, 2007)6. The marginal production of capital diminishes with its accumulation, reducing its effect on economic growth. This is the reason why the effect on long-term growth is unclear and why we should be pessimistic with respect to the contribution that transport infrastructure makes to the economic growth, (Mas, 2007).
Another considerations to appraise the impact of public infrastructure on growth are the financing mechanism and the tax structure. In Spain, transport policy is in hands of national and regional governments. We must contemplate the incentives of different levels of government for the regional financing mechanism, essential to explain the promotion of transport infrastructure investment and the tendency to overinvest.
The fiscal policy provides too less incentives for an efficient use of funds, there is no a direct correspondence between expenses and collected taxes. It encourages regions to exaggerate their needs for funds from the Structural Fund because otherwise the funds would go to another region.
To explain the possible overinvestment in Spanish infrastructure, it is also particularly important to assess the effectiveness of contracts between different levels of government that play a crucial role. The uncertainty associated with the life of a project and the risk sharing in the project makes more difficult to attain efficiency in the choice of contracts (Socorro and xx Xxx, 2010). Moreover, the Spanish regulation reduces the interest of private agents to avoid the proliferation of public infrastructure projects with a reduced social value, since the renegotiation of concession contracts unbalances risk allocation to the detriment of taxpayers.
In conclusion, Spanish transport and infrastructure policies are not based on a strategy that prioritises socially desirable projects, as it shows the commitment
6 The economic crisis may change this scenario and the expansive policy could be over.
Additional Economic Effects and Externalities in Transport Infrastructures
to high speed rail that is a transport mode with high fixed costs and expensive maintenance costs (Campos et al., 2009) that requires a higher demand level than the existent in Spain with reduced effects on the convergence between regions. 7
This particular infrastructure is associated with a "tunnel effect" (Xxxxxxxxx Puebla, 2004). It develops the final nodes, lacking the generation of economic activity throughout the territory where it develops. There is a polarization effect that leads to increased accessibility at the nodes of the infrastructure, isolating intermediate regions from the poles (which attract business).
To sum up this subsection, we can say that there are three aspects to explain why infrastructure investment has not had impact on the economic growth and convergence between regions: the decreasing marginal product of capital, the financing system and the incentives scheme in the contract design.
1.3. Effects on labour markets
The relationship between infrastructure and labour has two aspects. On one hand, labour is an input and it is a cost. On the other hand, infrastructure investment may have positive effects on the aggregate level of the labour market. On the supply side, improvements in transport infrastructure reduce commuting time, increasing the number of potential workers for a given location, and on the demand side, firms may gain productivity derived from a better matching in the labour market.
The literature emphasizes the effect that public infrastructure can have on the production and location decisions of firms (Munnell and Cook, 1990). Typically, there are two approaches for analysing the effects of infrastructure investment on business performance: the production function approach and the cost approach. The production function approach focuses on changes in aggregate output levels, while the cost function approach emphasizes the changes in the transportation costs of inputs and outputs.
7 According to PEIT, the document prepared by the Spanish Ministry of Public Works covering its transport and infrastructure strategy for the period between 2005 and 2020, a total investment of 241,392 million Euros is planned, mainly for high-speed rail system.
Additional Economic Effects and Externalities in Transport Infrastructures
First, changes in transport infrastructure may lead to adjustments in inputs and outputs because it may provide new possibilities for production. The stock of transport infrastructure may be introduced into the production function through two different channels. Firstly, it may enter as a new input, directly contributing to firm production, in the same way as labour or capital is typically considered. This means that production increases because it increases the stock of capital infrastructure. Secondly, it may enter as a factor that augments the productivity of other inputs employed by firms. In other words, improvements in transport infrastructure could be considered to be an increase in the technology of the production that could enhance overall productivity. This approach has the advantage of capturing the complementary relationship between the factors, since the stock of capital infrastructure does not contribute to production without consuming the other factors.
Second, transport infrastructure may also increase firm productivity by lowering the transportation costs of inputs and outputs. An increase in the reliability of transport may allow firms to reduce stock inventory costs or to improve access to customers, generating economies of scale by serving larger markets. It results in a reduction in long-term average costs, which can be translated into an increase in productivity (SACTRA, 1999).
The cost reduction allows firms to experience productivity gains and lower the prices of their products what helps them to expand their markets. A fall in relative prices stimulates the product demand, depending on the price elasticity, and as a consequence, firms increase their demand for workers (Button, 1998). Moreover, a higher productivity environment could be attractive to investment, and it may encourage the expansion of existing businesses and attract private investment into a region, generating an increase in overall production and a higher demand for employment.
Labour markets also increase in geographic size because of the commuting effect (SACTRA, 1999; Xxxxxxxxx, 2002). A reduction in commuting costs enables workers to increase the area of their job search and to make longer journeys for equivalent generalized costs. In some cases, the improvement of transport services allows companies to hire workers from remote regions.
Moreover, improved accessibility to employment opportunities could encourage people to participate in the labour market. Xxxxxx (1996) suggests that commuting costs affect people’s decisions to enter in the labour market;
Additional Economic Effects and Externalities in Transport Infrastructures
commuting costs raise the reservation wage and lower the probability of entering in the labour market. Therefore, the reduction of commuting costs remove or reduce significantly this barrier to labour market participation by allowing people to seek a job that offers wages which are higher than or equal to their reservation wage.
The possible effects of transport infrastructure investment on labour and product markets are also an important determinant of firm location. The basic idea is that the location decision of firms and households is simultaneous (Carlino and Xxxxx, 1987; Xxxxxxx, 1994). Given that jobs and people locate spatially together, some firms may prefer to locate near a large pool of customers and skilled labour market. Migration response may lead to an increase in population, which represents not only an increased number of potential customers in the local market, but also potential labour force in the region.
In the long run, studies provide mixed and inconclusive evidence. The literature that tackles the impact of highway infrastructure on employment is a clear example. Some studies find that overall employment is positively and significantly related to the stock of highway infrastructure (Xxxxxxx et al., 1992; Xxxxxxxxx et al., 1998), government expenditure (Xxxxxxx and Xxxxxxxxx, 1994; Islam, 2003), and the availability of highway access (Luce, 1994; Xxxxxxx, 1994); other studies reveal no significant effect of highway infrastructure stock (Xxxxx- Deno, 1998) or highway expenditure (Xxxxx and Xxxxxx, 1996). Some other studies also find that an increase in highway capital (Pereira, 2000) or public spending (Dalenberg and Xxxxxxxxx, 1995) reduces the demand for employment.
Concretely, the employment gains associated with government expenditure on infrastructure may decrease rapidly after the construction period, so that we should consider whether the effect is merely a temporal shift of the employment levels that could have been generated by other government expenditure. To some extent, the final result is going to depend on the mobility of labour force. The concentration of economic activity induces people to move to a larger region in order to find better job opportunities and higher wages. This phenomenon may generate an effect on productivity and on tax revenues in the larger region, whether there is an increase in the working hours or, whether workers move to more productive jobs.
This effect may be significant at an individual level and, at the same time, it may have substantial effects on GDP, especially in the case of transport
Additional Economic Effects and Externalities in Transport Infrastructures
infrastructures that are used for commuting, such as subways or other local transport infrastructure (Venables, 2007).
Regarding the role of information in the labour market, Xxxxxxxx and Xxxxxxxx (2008) show that the effects of omitting search imperfections can be substantial. They show that imperfections in the search generate a gap between the labour marginal product and the wage, such that final benefits of a transport improvement are larger than those considered in a conventional cost-benefit analysis. The main source of imperfection is the lack of complete information necessary to clear the labour market at each moment in time, 8 and the worker usually faces a trade-off between the ideal job and his commuting costs. The worker could accept a job that does not perfectly match his ideal job but has low commuting costs, or accept a job located further from his residential place that offset the additional commuting costs.
Therefore, the worker has to choose balancing between searching only locally, avoiding higher commuting costs but having the risk of a longer duration of unemployment, or searching in a wider area to reduce the duration of his unemployment but, paying higher commuting costs. Under incomplete information, the worker takes his decision based on expected commuting costs and expected duration of his unemployment. As usual, the worker maximizes his expected utility achieving a second-best result.
At aggregate level, the results are inconclusive. The labour mobility is crucial to maximize the potential benefits for labour associated with the construction or improvement of the infrastructure and, the relative labour price is essential to attain a final equilibrium between regions, considering that the factor is priced at its marginal cost.
At a regional or local level, the effects are easily characterized, and it has been proved that the infrastructure has an effect on the individual choices of workers and firms. An infrastructure investment, if and only if it reduces commuting costs, improves the matching in the labour market and generates agglomeration economies. But this impact is also affected by imperfect information. If information were incomplete, part of the benefits associated with the infrastructure investment would lost because of the extra commuting costs in the job search.
8 We always work with the assumptions of perfect mobility of workers and no rigidities arising from subsidies or a minimum wage. It is assumed that the only friction in the labour market comes from information problems.
Additional Economic Effects and Externalities in Transport Infrastructures
1.4. Agglomeration economies
Agglomeration economies are effects on the spatial dimension of the economic activity that arise from the proximity of agents with independency whether the increasing returns are related to consumer/supplier linkages (Xxxxxxx et al., 2001), entrepreneurial spillovers (Xxxxxxx, 2007) or labour market pooling (Xxxxxxxx, 1920). Formally, there is a market imperfection that needs to be analysed and whose mechanisms of transmission are:
• Technological spillovers. Firms are more likely to learn innovations of other firms if they are physically close, and these technological spillovers are more likely to arise if similar firms are close to each other.
• Input market effects. By locating together, suppliers and purchasers can minimise transport and transaction costs, sharing costly infrastructure and keeping prices down because of competition effect.
• Labour market effects. Firms are more likely to match better when they locate close to many workers.
Regarding technological or knowledge spillovers, Xxxxxx et al. (1993) provide the most compelling evidence that knowledge spillovers are important and attenuate with geographical distance. Their results are based on patent citations that are highly spatially concentrated. Other papers, such as Xxxxxx (1989) and Acs et al. (1992) find similar results.
Agglomeration economies may also arise from consumer’s concentration, essential for the provision of retail products due to high fixed costs for delivering products and indeed areas with more people tend to have more retail outlets. Xxxxxxx et al. (2001) argue that there are four fundamental channels through which large cities enhance consumption. First, there are goods and services available in large cities that are not available elsewhere; second, large cities offer various charms; third, large cities provide public goods that would not be possible in smaller cities; and fourth, the relatively dense settlement of a large city allows a speed of interaction that would not be possible in a smaller one.
The concentration of demand also encourages agglomeration economies
Additional Economic Effects and Externalities in Transport Infrastructures
(Xxxxxxxx et al., 2005). They assume that increasing returns lead to the concentration of employment in a large factory creating larger markets, which in the presence of transportation costs induce other firms to choose the same location. The idea here is that the interaction between internal scale economies in production and transport costs leads to a self-reinforcing of agglomeration, when economic agents locate close to each other (Xxxxxxxx, 1920). 9
Looking at labour market pooling, there are several interesting aspects. First, workers match better in large cities (the urbanization effect) or in industrial concentrations (localization effect) what is consistent with Xxxxxxxx’x idea about the specialization of the labour force as a competitive advantage.10,11 Second, labour market pooling is fundamentally about risk (moral hazard and adverse selection) and the concentration reduces them, for example, through specialized mechanisms of intermediation.
There are, therefore, at least three dimensions over which externalities may be studied; industrial dimension, geographical dimension, and temporal dimension.
The industrial dimension is the degree to which agglomeration economies extend across industries. Xxxxxxxxx (1974) says that externalities are stronger in some industries than in others, so it seems reasonable to suspect that productivity gains in dense regions are partly realized through a change in the industry composition.
In the service industries, Xxxxxx and Xxxxxxx (2004) show that small establishments are mainly located in agglomeration, reinforcing the creation of large cities. In the large-firm, multi-plant and multinational manufacturing sector, where internalised knowledge is a firm’s primary proprietary asset, most firms are averse to the geographical clustering of their knowledge-generation activities with those of their rivals because of the potential net losses associated with information spillovers (Xxxxxx, 1998; Xxxxxxxx and Xxxxxxxxx, 2000). It is not the case in the information-intensive high-technology sector (Xxxxx and McCann,
9 For reviews of agglomeration literature, see Xxxxxxxxx and Xxxxxxx (2004), Xxxxxx and XxXxxxxx (1999), Xxxxxxxxx (1988), Xxxxxx (1983) and Xxxxxxx (1994).
10 Economies of urban concentration, or urbanization economies, are external to the firm and the industry but internal to the city, with benefits arising from local public goods, the scale of markets, the proximity of input-output sharing, and other kinds of inter-industry interaction.
11 Localization economies are external to the firm but internal to the industry, and are principally created through labour market pooling, the sharing of intermediate inputs, and knowledge sharing or ‘technological spillovers’.
Additional Economic Effects and Externalities in Transport Infrastructures
2002; XxXxxx et al., 2002), as well as in the more traditional manufacturing sector, especially for those firms for which transport infrastructure is important in the location decisions.
The geographical dimension is based on the idea that geographical distance is crucial, as agglomeration economies attenuate with distance. Then, if agents are physically closer, then there is more potential for interaction (Xxxxxx, 1983). Xxxxxxxxx and Xxxxxxx (2003) show, with a birth firm model, the impact on the total employment in the industry depends directly on the geographical scope of agglomeration economies. Most recently, Xxxxxxxxx (2003) has also found localization effects to be stronger.
The temporal dimension is essential. Agglomeration economics is not a static phenomenon, and it is possible that one agent's interaction with another agent at a point in the past continues to have an effect on productivity in the present. This means that two agents who are separated in time continue to affect each other, and the degree to which these time-separated interactions continue to be potent defines the temporal scope of agglomeration economies.
Xxxxxxx et al. (1992) and Xxxxxxxxx et al. (1995) include this dimension in their growth models, and they both show that the characteristics of a city can have an impact on its growth over a period of twenty years or more. But, theoretically, this type of estimate may be affected by simultaneity or endogeneity whose main solution is the use of historical variables. For example, the use of long lags of population density as an instrument of city size or density (Xxxxxxx and Xxxx, 1996). With the exception of Xxxxxxxxx (2003) who estimates agglomeration economies by using firm level panel data and GMM (Generalized Method of Moments) estimator, most of authors, among them Xxxxxxx and Xxxx (1996), Xxxxxxx (2002) and Xxxx et al. (2006), address endogeneity with instrumental variables a 2SLS (two stage least squares) estimator.
Xxxxxxx and Xxxx (1996), Xxxx et al. (2006), and Xxxxxx et al. (2006) instrument current levels of employment density using long lags data on population density. Their hypothesis is that the densities we observe today are determined by previous patterns of population concentration, and that these
Additional Economic Effects and Externalities in Transport Infrastructures
patterns are not correlated with contemporaneous levels of productivity12. Xxxxxxx (2002) uses, as a valid instrument, the total land area of European Union regions, while Xxxxxxxxx and Strange (2005) use data on geological features, arguing that variances in density are reflected in the underlying geology of the Earth and are uncorrelated with productivity and the skills of the labour force.
The endogeneity problem has proved to be incredibly difficult to address in a satisfactory way, largely due to data limitations Nevertheless, the evidence indicates that if agglomeration has an endogenous component, this does seem to induce a negligible bias in agglomeration estimates. In fact, Xxxxxxx and Xxxx (1996) and Xxxxxxx (2002) find only small changes in the estimates of agglomeration economies using instrumental variables rather than the least squares estimator. Similarly, Xxxxxxxxx and Xxxxxxx (2005) conclude that the influence of endogenous regressors is small, while Xxxxxxxxx (2003) reports that the correlation between the regressors and the error term is also negligible.
Actually, other research stream focused on the increases in accessibility resulting from transportation improvements (Xxxxxxxx and Xxxxxxxx, 2009; Xxxxx and Xxxxxxxxxx, 2001; Xxxxxxx and Xxxxxxxx, 2000; Xxxxxxxx and Xxxxx, 1993; Xxxxxxx and Xxxxxx, 2005; XxXxxxxx and XxXxxxxx, 2004; Xxxxxxxx, 2008) does not tackle the possible endogeneity. Their results are based on the presence of political lobbying and geological or technical difficulties that prevent a direct relationship being found between infrastructure design and economic efficiency.
These accessibility studies simplify the real world in two regions connected by a single infrastructure, without specifying their characteristics. They do not consider that in a more complex world, increases in productivity in the studied region may come from reductions in other regions due to changes in the spatial distribution of economic activity. Therefore, this research line focuses on accessibility increases without distinguishing whether positive correlation between agglomeration and productivity is a consequence of agglomeration or a consequence of high productivity.
Previous discussion shows that agglomeration externalities do exist but the data is usually aggregated at spatial level, at a scale that limits to capture
12 This approach requires detailed spatial information on densities from several decades earlier, typically back to the 19th century, and these data tend to be hard to find, particularly for small spatial areas. Instruments based on contemporary data have also been used.
Additional Economic Effects and Externalities in Transport Infrastructures
agglomeration economies. Xxxxxx (2006) sums up the desirable properties of a reasonable treatment of agglomeration:
• The spatial modelling framework should avoid predefined units such as administrative areas and should allow one to identify variation in agglomeration on a small spatial scale. A common approach is to contemplate employment within a certain distance, measured as distance or time.
• The measure of agglomeration used should emphasize distance or density in order to include a transport dimension.
• The analysis should allow for detailed sectorial coverage.
• The estimation should enable to isolate returns to urbanization from other scale effects.
Considering previous properties, agglomeration effects may be defined as the accessibility to any firm in any industry located in a given xxxx, which is dependent on transport infrastructure, and on effective densities. Therefore, we may characterize accessibility of users in terms of generalized cost.
Generalized costs include also the effect of congestion. Firms consider their own private costs, they do not internalize that their use of the infrastructure increases the transport costs of other firms. More agents in a given xxxx may exceed the capacity of the infrastructure, which may also produce traffic congestion, reducing the potential benefits of the agglomeration. There is therefore a set of opposing forces that together determine the size of cities and clusters.
In the case of employment, for example, the economic appraisal should take into account not only the number of jobs created in a location but also the number of jobs destroyed. Transport infrastructure, in that sense, may improve effective density by bringing jobs closer, and it may also relocate employment. The final result will be positive if transport infrastructure encourages an increase in employment of cities, and negative if it encourages the dispersion of economic activity. That is the reason to include all areas, even those that may suffer disagglomeration.
To generate productivity gains, the mobility of labour is crucial and depends on two factors: legislation and transport infrastructure. We focus on the second one; Xxxxxxx and Xxxxxxxxx (2000) say that more efficient labour markets
Additional Economic Effects and Externalities in Transport Infrastructures
may produce persistent differences in unemployment rates across regions. If there is mobility, labour will move towards locations with higher real wages, but, if not, wage differences will persist and act as a dispersion force by increasing production costs.
Xxxxxxxx (1920) states that the provision of regional infrastructure can promote the generation of local agglomeration economies Xxxxxxxx (2007) shows that transport investment can strengthen agglomeration economies and induce positive productivity benefits by effectively increasing urban densities.
Concretely, Xxxxxxxx and Xxxxxx (2008) estimate the effect that road growth has had on population and employment. The analysis is developed using an instrumental variables strategy based on a state highway plan designed in 1947 (which had been used previously by Xxxx-Snow (2007) to analyse the effect that the construction of motorways has on the population of cities). Xxxxxxxx and Xxxxxx (2008) conclude that an increase in the road stock in a city by 10% increases population by 2% and decreases the percentage of households without financial resources.
But, the mobility of the factors, as it was aforementioned, essential to create agglomeration economies, is limited by the capacity problems of transport infrastructure. When demand exceeds the maximum capacity of infrastructure, congestion arises, a negative externality, which hinders the development potential of economies of agglomeration. In addition, the infrastructure may become obsolete, for technological reasons or spatial movement of population and economic activity, which also reduces the chances of generating economies of agglomeration.
Xxxxxx (2007b) investigates the relationship between productivity and employment density, comparing two measures of density: one which is based on distance and the other which is based on generalized cost and which indirectly captures the congestion effect, and the limited capacity of the infrastructure. He concludes that productivity growth is based on urban agglomeration economies and that these can be obtained by employment growth or, by decreasing travel times; this emphasizes the role of road congestion in the creation of agglomerations.
In short, it should be noted the complementary relationship between improving transport infrastructure and agglomeration economies. The agglomeration arises from the concentration of the economic agents; consumers,
Additional Economic Effects and Externalities in Transport Infrastructures
workers or businesses and they are transmitted through the technology and inputs markets, generating positive benefits for those who are placed together resulting in productivity gains. Clearly, factor mobility is essential for agent’s concentration and transport infrastructure plays a central role to attain it.
Agglomeration economies are closely linked to an efficient transport system that allows the mobility of factors. If there is no mobility, no matter how efficient is the transport infrastructure that there will not be agglomeration economies and persistent wage differences may arise between different regions. At the same time, if there is no an efficient transport system, no matter how mobile is the factors that transport infrastructure will influence on such mobility. Transport infrastructure, in particular, is characterized by its limited capacity, if demand exceeds the capacity; the congestion appears affecting the potential benefits of agglomeration.
1.5. Imperfect competition
There are two wider economic effects related to markets: imperfect competition in markets that use transport as an input and the effects on competition as a result of a project.
On one hand, firms with market power, unable to price discriminate perfectly, set prices above marginal cost, so the quantity demanded is less than the social optimum, resulting in a loss of social welfare, because there are consumers with a willingness to pay above the cost of production who can not acquire the good.
Under this scenario, a reduction of transport costs carries a market price reduction and an increase in the level of production, which, in turn, generates a reduction in the loss of comfort. Although consumers are unwilling to pay more than the equilibrium price, or the producers are willing to produce it, there is an additional benefit not captured with consumer or producer surpluses. It coincides with the difference between the price and quantity by increasing production.
Additional Economic Effects and Externalities in Transport Infrastructures
It is important to note that the effect can be negative if firms sell less because the reduction in transport costs affects positively a product, which is substitute in secondary markets.
Under imperfect competition, the assessment of costs and benefits at market prices is not appropriate, which may lead to distortions in locating funds and decision-making on public projects, producing a suboptimal allocation among industries. A transportation project may have effects on market competition in the affected region. That is, when transport costs are high their reduction can facilitate the entry of new companies. They find profitable to offer their products in relation to the scenario without the project in which the incumbent is protected by barriers to entry that provide them transportation costs.
This effect of higher competition is not expected to be substantial in economies with mature transportation infrastructure, since we do not expect significant increases in efficiency resulting from reduced travel times. This effect may be more important in those projects involving countries or regions that are isolated or with limited connectivity, usual case of developing countries.
Xxxxxxxx and Xxxxxxxx (1999) show that the impact of transport costs reduction can lead to agglomeration economies that result in uneven effects regions connected by the same infrastructure. In the case of a spatial distribution of centre-periphery, reducing transport costs can promote the reorganization of production in the central region generating mergers, acquisitions or bankruptcies that allow the remaining companies to meet increased demand at a lower cost.
Following the above argument, Xxxxxxx et al. (2010) show that additional economic benefits in projects linking a centre and its periphery are higher than in those projects that link two highly urbanized regions. Peripheral regions are usually smaller than the central region and usually present markets more prone to market power. Cost reduction enables companies in the central region, usually more efficient by competitive pressure of market, supply to peripheral regions causing a reduction in the market power of firms located in these regions.
However, this effect should not be confused with the welfare gains arising from production increases in markets with market power, explained above.
Additional Economic Effects and Externalities in Transport Infrastructures
1.6. Environmental effects, accidents and congestion
The European Commission highlights the environmental impact of transport activities, writing papers and recommendations on transport policy, such as European Commission (1995), which mainly discusses the most appropriate pricing systems to internalize external costs, or European Commission (2006) that focuses on the efficient use of infrastructure.
The final aim is to internalize external costs to improve the efficiency of the transport system, to guarantee equal treatment between modes of transport, and to improve safety, while negative environmental impacts are reduced.
The externalities produce a divergence between private costs (borne directly by the agent) and social costs (borne by society). This introduces perverse incentives to the supply and demand of transport, which leads to welfare losses. To solve it, the optimal price is set when the social marginal cost equals the marginal revenue; in the case of transport, these costs can be classified into several categories:
• Capacity restriction costs. It includes all costs associated with high traffic densities.
• Costs of accidents. It covers all direct and indirect costs related to materials, doctors and fatalities.
• Environmental costs. It includes all the environmental costs related to health problems, property damage, damage to the biosphere and long-term risks. These mainly arise from noise, air pollution, and climate change or greenhouse effects.
Regarding climate change, it is necessary to differentiate between various effects (Xxxxxxx, 2005):
• Rising sea levels. It implies the need for additional protection against flooding in wetlands and drylands. These costs depend on social and political factors that affect decisions about the future, whence the protection is justified.
• Energy use. The impact depends fundamentally on temperature, but there is a combination of increases and decreases in heating demand based on seasonality.
• Impacts on agriculture. It depends on regional changes in temperature and rainfall, as well as from levels of atmospheric carbon dioxide.
Additional Economic Effects and Externalities in Transport Infrastructures
• Impacts on the supply of drinking water. They depend on changes in the rates of precipitation and evapotranspiration, and changes in demand. The demand for water by biological systems is affected by climatic factors, including temperature and humidity.
• Impacts on health. Apart from the direct effects on mortality, which could be quite small, the spread of diseases and epidemics could have a far greater impact, especially in developing countries.
• Ecosystems and biodiversity. These are among the most difficult effects to quantify, and they are one of the direct effects of infrastructure construction.
In case of air pollution, Xxxxxx (2003) distinguishes the effects in three different parts of the atmosphere: the stratosphere, the troposphere and the atmosphere. Using this classification, the global environmental effects are related to gas emissions in the troposphere and the stratosphere, while local pollution is related to emissions closest to the ground. To highlight the negative externality, we should consider some emitted substances. The nitrogen oxide affects directly human morbidity and mortality, and indirectly through climate change, produces effects on the immune system. The sulphur oxide affects directly the respiratory system and may cause pulmonary diseases, and carbon dioxide comes from incomplete combustion, emitted mainly from vehicles and unavoidably affects the ozone layer.
This leads to a discussion about which mode of transport should be preferred when one considers the environmental costs. Xxxxxx (2003) points out that planes are more harmful to the environment, in operative terms, than high- speed rail, mainly due to the effects of aviation on climate change. This result is aligned with INFRAS/IWW (2004), though this follows a broader assessment of externalities by capturing the effects of noise, urban air pollution, the effects of accidents, and climate change.
The environmental costs of high-speed trains depend crucially on the way in which their energy has been generated, but the difference between modes is narrowing and is expected to continue to do so. Xxxxxxxx (2009) and Xxxxxx (2004) obtain opposite results to those above when they include the environmental costs of the construction period, because the high-speed rail infrastructure require, among others, heavy use of highly polluting heavy machinery.
Additional Economic Effects and Externalities in Transport Infrastructures
Another source of externality is the reduction in the relative number of accidents and in road congestion that depend crucially on the ability of the new infrastructure to divert travellers from alternative modes, and is unambiguously related to the time savings and pricing policy.
1.6.1. Regulation and theory of environmental externalities
Economic agents demand the emission of pollutant substances13 to create economic activity, so they have a willingness to pay a cost associated with the reduction of emissions (abatement costs). It is possible to create a regulated market, through the definition of property rights.
To do that, we can consider two basic types of regulation: quantities and prices. Firstly, one can simply limit the maximum amount of pollutant substances that is allowed to emit; given that agents have a willingness to pay for each unit they emit, there is a market and an equilibrium price where the market clears. Secondly, we can consider a price cap per unit, so that agents can emit as much as they want but must pay the corresponding price. In that case, the price indirectly fixes the maximum amount of substances emitted.
In a world of perfect information, price and quantity regulation are equivalent, as Xxxxxxxx (1974) shows. But the real world is much more complex, and the uncertainty associated with the final emission of pollutants and the final source of these emissions makes the optimal approach extremely difficult to implement.
In that sense, governments have a rather large toolbox to choose from when they want to control emissions of harmful substances. Amongst the most prominent instruments we can find standards, taxes and tradable emission permits.14 In some contexts the choice of instrument has only minor implications for efficiency; if, for instance, a planner is equipped with complete information he is able to attain the efficient emission level in a cost-effective way with any instrument.
In a world where abatement costs are uncertain, this is no longer the case, because they will, in general, yield an emission volume deviating from the
13 Xxxxxxxxx (1990) reviews the most important parts of the economic theory and measurement of environmental damage.
14 See x.x. Xxxx and Xxxxxx (1985) and Xxxxxxx (2003) for reviews of environmental policy instruments.
Additional Economic Effects and Externalities in Transport Infrastructures
efficient one. A cap–and–trade system with a cap at the expected efficient emission level generates too few (many) emissions when abatement costs turn out to be higher (lower) than expected. The optimal tax, on the other hand, induces too many (few) emissions. Xxxxxxxx (1974) shows, under the assumption of linear marginal abatement cost (MAC) and marginal abatement benefit (MAB) schedules, that the cap-and-trade approach yields a lower expected social cost (environmental cost plus abatement costs) than the tax approach when the MAB function is steeper than the MAC function.15, 16
Much research has been devoted to finding instruments that may further reduce the expected social costs. Xxxxxxx and Xxxxxx (1976) show that a cap-and- trade system combined with a finite penalty for non-compliant behaviour and abatement subsidies results in an emission volume which is closer to the ex post efficient level than can be achieved with either an emission tax or a pure cap-and- trade system. Despite this, the hybrid instrument of Xxxxxxx and Xxxxxx has rarely—if ever—been systematically employed in practice, presumably due to its complexity.
Xxxxx (1999, 2002) analyses a simpler version, namely a cap-and-trade system combined with a price ceiling, or a so–called safety valve, and shows that such an instrument can substantially reduce expected social costs, when compared to a pure cap–and–trade system or a tax. It can be argued that most, if not all, cap–and–trade systems include a safety valve, either by way of a predetermined trigger price at which the regulator is obliged to sell additional permits or implicitly by a finite penalty for non-compliant behaviour.
Another way to reduce the expected social costs would be to index the cap level to a variable that is correlated with the uncertain MAC (Xxxxxxx, 2005; Xxxxxx and Xxxxx, 2006). Indexed regulation has been around for a while: for instance, environmental concessions often allow firms to emit a certain amount per output. Another example is the kind of xxxxx electricity certificate systems we find in Norway, Sweden and the UK in which the target level (the amount of
15 Xxxxxxxx’x rule has proved to be rather robust in several dimensions; it also holds, with some adjustments, for the case of stock externalities (Hoel and Xxxx, 2002; Xxxxxx and Xxxxx, 2005), and for the case where the stochastic elements of the MAB and the MAC functions are correlated (Xxxxxxx, 1996). However, when we leave the realms of linear marginal schedules Xxxxxxxx’x rule may lead to the wrong conclusions regarding both the optimal instrumental choice and the optimal control levels: see Xxxxxxxxx (1978) and Xxxx (1978).
16 Of course, the optimal policy design is also influenced by other factors, such as implementation costs and transaction costs (Xxxxxxx, 1996), as well as indirect effects such as to what extent regulation rents are left in private hands (se x.x. Xxxxxxxxx and Xxxxxxx, 2002).
Additional Economic Effects and Externalities in Transport Infrastructures
xxxxx electricity produced) is expressed as a fraction of total electricity consumption. Moreover, in the climate change context, national emission quotas that are indexed to countries’ GDP levels or populations have been discussed as a means to encourage developing countries to sign a climate treaty (see Xxxxxxx et al., 1999, Lutter, 2000 and Xxxxxxxx and Xxx Xxxx, 2003).
Xxxxxxx (2008) points at still another possible way of reducing social costs, which is to divide the emitters into two groups and let one group be subject to an emission tax and the other to a cap–and–trade system. He shows that since these two instruments go in opposite directions from the ex post efficient emission volume when abatement costs deviate from the expected ones, it is possible to find a mix of the two instruments that reduces social cost (as compared to a universal tax or a universal cap), even though emitters in the two groups do not face the same price on emissions so that abatement efforts are not distributed cost–effectively. The intuition behind this is that the linear combination of a cap– and–trade system and an emission tax is preferable to each policy on its own.
The different theoretical mechanisms presented here face an important problem of implementation and they will be discussed in more detailed in chapter 4.
1.6.2. The role of accidents and congestion in the evaluation of infrastructure
Accidents represent an external cost to the health system, police and damage to third parties—even when users bear part of the cost by paying for insurance.
In other words, users take into account some of the costs associated with the possibility of an accident, but not all, so some of them, are transferred to the society, leading to an excessive use, from a social perspective, of modes affected, leading to a loss of social welfare.
These costs correspond to the loss of life, whose values is known in the literature as the statistical value of life, consisting in the willingness to pay to reduce the probability of dying in a traffic accident, the welfare loss for family
Additional Economic Effects and Externalities in Transport Infrastructures
and friends, and other costs, including the damage to physical assets. The first cost is the most important and has received most attention in the literature.17
Therefore, the externality has two origins. On one hand, agents do not consider the welfare loss for family and friends, and the damage to physical assets and, on the other hand, an individual driver's decision affects the probability that any user of the infrastructure will have an accident.
From an empirical point of view, there are several studies that have quantified the external costs of road accidents. Xxxxx (2000) considers that the cost for OECD countries ranges from 0.5% to 5.7% of GDP. Other authors usually considered the external costs to be substantial (Xxxxxxxx et al., 1996; Xxxxxx, 1993). However, Xxxxxxx et al. (1997) published a micro-analysis which shows that these costs have been overestimated in many cases, since they assume that the number of accidents is proportional to the flow of vehicles (see Xxxxxxx 1968, 1969 and Xxxxxxx, 1987).
Congestion, in turn, arises because there is a mismatch between the demand and the number of users willing to use an infrastructure or service at a given time and the infrastructure capacity or supply to provide the service to those users who rarely is constant over time. The consequence is increases of travel time, that is, the number of users of the transport infrastructure has impact on the individual travel time and, for this reason, the congestion may be considered as an externality. It is an externality because agents do not consider the costs they impose on others in their decision-making.
Concretely, congestion may differ between those scenarios in which the entry to the infrastructure is free (and there are no coordination associated with the use of the infrastructure) and infrastructures where the entry is regulated with slots (as is usually the case with airports). In the first case, there is no role for a price scheme, while in the case of regulated entry, the price scheme is crucial and can be used not only to reduce the quantity of traffic, but also to shift traffic from peak periods to valley ones.
In principle, our analysis is focused on the former case. Congestion has been widely tested in urban areas, in contrast to economies of agglomeration, and therefore the effect on productivity has been studied. In this sense, price charging
17 Xxxxxx et al. (2003) present a review of the most important, and Xxxxxxx (2003) a critical review of mechanisms based on estimation approaches in the market.
Additional Economic Effects and Externalities in Transport Infrastructures
schemes resulting from congestion have been studied and implemented in some cities such as Stockholm, London and Milan.
Another issue of congestion, from the point of view of transport policy, is the elasticity of the congestion reduction with respect to the supply of infrastructure. This aspect is important for appraising the investment. Xxxxxxx (2002) shows that studies assessing the effects of new infrastructure over an area usually conclude that there are positive elasticities, but their elasticities can vary considerably.
Congestion and road accidents are ultimately linked each other, since both are externalities generated by infrastructure users. However, their relationship has not been widely studied. Xxxxxx and Xxxxxxxx (1997) and Xxxxxx (1994) estimate that there is an indirect relationship between congestion and accidents, although their studies used traffic density as a proxy for congestion. Xxxxxxx and Xxxxxx (1953) carried out studies using flow variables, and Xxxxx and Xxxxxx (1982) estimate that there is a U-shaped relationship. Other articles such as those of Xxxxxx and Xxxxxx (1986) and Xxxxx and Xxxxxx (2003) have shown that the relationship between the flow of vehicles and the severity of accidents is negative.
In summary, the benefits associated with the reduction of the congestion is expected to be lower than those related to reducing accidents. The former is primarily directed by the relationship between the capacity and demand infrastructure while the second is dependent on the traffic conditions of the infrastructure.
Additional Economic Effects and Externalities in Transport Infrastructures
Chapter 2. Regional Effects of Infrastructure: The Investment in High-Speed Rail Networks
2.1. Introduction
Transport infrastructure is fundamental for the smooth operation of the internal market, the mobility of people and goods, and the economic, social and territorial cohesion. In particular, it is seen as performing this role through its effect on competitiveness and employment.
Transport has a double effect on the labour market. On one hand, transport improvements reduce commuting time and increase the number of potential workers in a given location (SACTRA, 1999; Xxxxxxxxx, 2002). A reduction in commuting costs enables workers to increase their job search area and to make longer journeys for equivalent generalized costs. On the other hand, firms may get productivity gains from better matching in the labour market and lower transport costs of inputs and outputs. This cost reduction helps firms to expand their markets. Firms that experience productivity gains would lower their prices, stimulating the demand for their products and the demand for workers (Button, 1998).
Transport improvement also has an impact on labour market participation (Borjas, 1996). Commuting costs are part of the individual reservation wage and its reduction affects the decision of labour market participation by allowing people to seek a job offering a wage above their reservation wage. Moreover, the location decision of firms and households is simultaneous (Carlino and Xxxxx, 1987; Xxxxxxx, 1994). Thus, jobs and people locate spatially together, generating agglomeration economies and productivity gains because of improvements in the labour matching which depends on employment density.
Regarding transport infrastructures, these play a key role in the EU policy, and total investment during the 2000-2006 period was 859€ billion. The cost of establishing an efficient trans-European transport network (TEN-T) has been estimated at over 1.5€ trillion for the 2010-2030 period.
Additional Economic Effects and Externalities in Transport Infrastructures
Spain has also followed the European strategy and has bet intensively on transport infrastructure. The Spanish government has promoted heavily the development of a high-speed rail (HSR) network as shown in the Strategic Infrastructure and Transport Plan (PEIT). The PEIT includes the main activities in infrastructure and transport between 2005 and 2020, with a total investment of 241,392€ million. It values significantly the possibilities that infrastructures have for regional cohesion and employment, as proven by its commitment to create a HSR network which aims to have 90% of the mainland Spanish population located within 50 km of a station.
The need for assessing the economic effects of HSR is doubtless. In the Spanish case, the existing economic literature casts serious doubts upon the socio-economic profitability of such transport infrastructures under the current conditions (traffic, time values, time savings, costs, etc.). As shown by the cost- benefit analyses of xx Xxx and Xxxxxxx (1997) for the Madrid-Seville and xx Xxx and Xxxxx (2005) for the Madrid-Barcelona line, the social benefits accruing from its construction and operation do not cover the costs that society affords.
The main goal of this paper is to quantify the potential impact on employment density that might arise from infrastructure provision given its characteristics of non-tradable input. This paper examines the effect that the construction of high-speed lines has had on employment density in the municipalities close to the network.
The link between employment density and productivity is commonly known as agglomeration economies. Xxxxxxxx, in 1890, was the first to define the concept and emphasise the role that regional infrastructure plays in their development. After his contribution, many researchers have been interested in discovering how these infrastructures are related to the creation of economic activity and employment.
Xxxxxxxx (2007) develops a theoretical model that shows the relationship between the provision of transport infrastructure and agglomeration economies through the employment density. He concludes that there exist agglomeration benefits not captured in a standard cost-benefit analysis and that this should be considered in an economic appraisal of transport improvements. Following this idea, Xxxxxx (2007a) estimates, based on the previous theoretical model, the agglomeration elasticities that proved to be particularly significant in the service sector.
Additional Economic Effects and Externalities in Transport Infrastructures
The paper examines changes in employment density at municipality level. This provides a new dimension. There are many articles which focused on microeconomic level considering changes at individual level, Xxxxxx (2007a), Xxxxxxx and Xxxx (1996) and Xxxxxxx (2002), among others, show for the United States, and the European Union, that there are positive and substantial externalities arising from the increase in the density of cities, particularly for service industries.
Other papers focus on aggregate impacts with mixed and inconclusive results. Some studies find that overall employment is positively and significantly related to the stock of highway infrastructure (Xxxxxxx et al., 1992; Xxxxxxxxx et al., 1998), government expenditure (Xxxxxxx and Xxxxxxxxx, 1994; Islam, 2003), and the availability of highway access (Luce, 1994; Xxxxxxx, 1994), other studies reveal no significant effect of highway infrastructure stock (Xxxxx-Deno, 1998) or highway expenditure (Xxxxx and Xxxxxx, 1996). Some other studies also find that an increase in highway capital (Pereira, 2000) or public spending (Dalenberg and Xxxxxxxxx, 1995) reduces the demand for overall employment.
The paper quantifies employment density at an intermediate level, considering municipality information level for the 1991–2008 period in order to obtain a disaggregated view of the effects of the construction and operation of the Spanish HSR network on employment.
The relevant period allows us to capture if employment gains associated with government expenditure on infrastructure may decrease rapidly after the construction period, so that we should consider whether the effect is merely a temporal shift of the employment levels that could have been generated by other government expenditure.
The use of panel data is an advantage of our approach. It allows us to control for unobservable effects in the municipalities and for endogeneity when we consider the dynamics of employment. The endogeneity arises from the inclusion of the lagged dependent variable.
None of previous papers considers this aspect. Even those papers that focus on the accessibility increase resulting from transportation improvements, which could have significant effects on the regional development (Xxxxxxxx and Xxxxxxxx, 2009, Xxxxx and Xxxxxxxxxx, 2001, Xxxxxxx and Xxxxxxxx, 2000; Xxxxxxxx and Xxxxx, 1993, Xxxxxxx and Xxxxxx, 2005, XxXxxxxx and XxXxxxxx, 2004; Xxxxxxxx, 2008) do not include the treatment of the potential endogeneity.
Additional Economic Effects and Externalities in Transport Infrastructures
However, these papers present two fundamental weaknesses. The first is related to the lack of instrumental variables, so the argument of exogeneity of the shocks is based on political lobbies and orographic or technical difficulties that prevent drawing a direct relation between the design of infrastructure and the arguments of economic efficiency. The second, the inability to quantify the net effects of the infrastructure, i.e. the methodology is unable to differentiate between the net increases and the relocation of the economic activity.
However, it should be taken into account that previous models simplify the real world into a model of two regions, which are linked by a single infrastructure, without explicitly modelling the characteristics of this infrastructure. Furthermore, they do not consider that in a more complex world, increases in productivity within the studied region may come from decreases in other regions because changes in the spatial distribution of the economic activity, an issue that is also discussed in this paper.
The chapter is organized as follows. Section 2 explains how we collected and processed data and presents a descriptive analysis. Section 3 gives a detailed presentation of the econometric approaches to quantify the relations of interest and shows the main results from the different databases and different econometric estimations; we also discuss and quantify the relationship and the importance of the Spanish HSR in increasing employment density. Section 4 presents a discussion of the results and their implications on public policy. Lastly, Section 5 summarises the main conclusions.
2.2. Data
To test the impact of HSR network on employment density, we use an unbalanced panel data sample based on 3,252 Spanish municipalities with more than 1,000 inhabitants in Spain on 1st January 2009 whose population represents 96.8% of Spain for 10 years (2008–1998).
Employment density (denempit ), our endogenous variable, is the number of employees per square kilometre and municipality. Given that there is no information about the spatial distribution within the boundaries of the
Additional Economic Effects and Externalities in Transport Infrastructures
municipality, we assume that employees are uniformly distributed within. This dependent variable is obtained from the Public Employment Service, while data on the rest of variables are collected from the municipal Economic Yearbook "la Caixa" database and the Spanish the National Statistics Institute (INE).
The exogenous variables are a set of economic indicators where income should play a central role. But, the lack of an income variable at municipality level forces us to look for proxies. We do an auxiliary regression for NUTS3 regions18, where income variable is available, with respect to a set of variables; population level ( populationit ) , the number of motor vehicles (vehiclesit ) , excluding buses, financial office density (denfinit ) , and the number of retail establishments per 1,000 inhabitants (retpopit ) . The set of variables have a joint
explanatory power (R2 )
of the income variable equal to 0.85, reason why we
take these as exogenous variables of the employment density at municipality level.
The effect of the HSR on employment density is also determined by
HSRit ,
characterised as a binary variable that takes a value of 1 in the years of operation
and 0 otherwise. We also include
timeit
capturing business cycle effects and
temporal dimension, essential to isolate the effects of the HSR investment on employment density.
18 There are three levels of Nomenclature of Territorial Units for Statistics (NUTS) defined. This category refers to regions belonging to the third level (NUTS 3), the most disaggregated one, such as provinces in Spain or districts in Germany.
Additional Economic Effects and Externalities in Transport Infrastructures
Table 2.1. Definition of variables and descriptive statistics
Variable | Definition | Mean | Standard Deviation |
Denemp | Number of employees per square kilometre and municipality. | 72.97 | 4.53 |
Population | Number of resident people in a municipality. | 10,353.39 | 41,677.86 |
Vehicles | Number of motor vehicles, excluding buses. | 2186.37 | 3.35 |
Denfin | Number of financial offices per square kilometre. | 0.3 | 1 |
Retpop | Number of retail establishments per 1,000 inhabitants. | 2.13 ⋅ 10-5 | 1.51 ⋅ 10-5 |
HSR | Binary variable: 1 when HSR is operating and 0 otherwise. | 0.03 | 0.16 |
Time | 1 for the first year of the database (1998) and 10 for the last one (2008). | 5 | 2.72 |
2.2.1. Data treatment (GIS)
The HSR network develops along the territory and has economic effects on the surrounding populations of its stations. The spatial dimension of its effects requires the use of Geographic Information System (GIS)19 to reference the database geographically. The use of GIS allows us to discuss the impact of the transport infrastructure considering the scope of the distance with respect to the infrastructure on employment, essential for the productivity increases, Xxxxxxxx (1920).
First, we localize HSR stations geographically. Spain has four main corridors, though we exclude the Eastern Corridor because it was completed in
19 Geographic information system (GIS) is a system designed to capture, store, manipulate, analyze, manage, and present all types of geographical data. GIS is the merging of cartography, statistical analysis, database technology. A GIS can be thought of as a system—it digitally creates and "manipulates" spatial areas.
Additional Economic Effects and Externalities in Transport Infrastructures
2010. Our examined routes are Madrid–Cordoba–Seville–Malaga and Madrid– Toledo (Southern Corridor), Madrid–Zaragoza–Barcelona and Zaragoza–Huesca (Northern Corridor) and Madrid–Valladolid (Northwest Corridor), a total of 18 stations and 1,665 km of track20.
Second, we capture the spatial dimension, establishing concentric circles around the HSR stations. The aim is establish influence areas to examine the impact on the employment density. It is performed for an area of 10 kilometres (Figure 2.1). 21
Figure 2.1. An influence area of 10 kilometres
Figure 2.1 shows a concentric circle of 10 kilometres around the HSR station that limits the influence area of the infrastructure. When the whole surface of the municipality is in the circle, we treat it as affected by the infrastructure. But, the circle, in some cases, divides the surface of municipalities. Then, we consider, as affected by the HSR, only the proportional part of the municipality that is in the circle, assuming that all the variables are distributed uniformly over the surface of the municipality.
Table 2.2 differentiates the municipalities between those under an influence area of 10 km around HSR stations and those that are not.
20 For a critical view of the infrastructure of the HSR, see Xxx and Xxxxxxxx (2010).
21 The analysis was also carried out for influential areas of 5, 15 and 50 km.
Additional Economic Effects and Externalities in Transport Infrastructures
Table 2.2. The difference between municipalities with and without HSR in
an area of 10 kilometres
Variable | HSR = 1 | HSR = 0 | Difference (HSR = 1 – HSR = 0) |
Denemp | 93.69 | 72.24 | 21.45 |
Population | 10,447.42 | 6,977.88 | 3,469.54 |
Vehicles | 780.55 | 2252.96 | -1472.41 |
Denfin | 0.31 | 0.19 | 0.12 |
Retpop | 4.87 ⋅ 10-5 | 2.06 ⋅ 10-5 | 2.81 ⋅ 10-5 |
Average for municipalities with a HSR is above those without, except for vehicles . We can ensure that municipalities under the HSR influence area are usually larger and have greater economic activity. Specifically, the average of denemp is 21.45% higher for those municipalities under the HSR influence than for those not.
The negative sign of vehicles could be related to the influence of tourism on the number of vehicles in a region. Tourism generates a latent high demand for cars, thanks to car rental companies and the HSR is not always present in the most developed tourist regions, which are also usually characterised by the intensive use of private vehicles.
2.2.2. Matching
We build a database with the set of Spanish municipalities with the aim of comparing those who are under the influence area of a HSR station with the rest of municipalities. But, we are comparing a group affected by the construction of a HSR with other group of municipalities whose characteristics may differ substantially. That is, the control group may not be comparable with the affected group.
This selection bias leads to biased estimates. To eliminate this potential bias, and to evaluate the effect of the HSR network on the employment density,
Additional Economic Effects and Externalities in Transport Infrastructures
we use a statistical matching. It allows us to create a quasi-experiment because for every city where there is a HSR station, we find those cities without HSR that have similar observable characteristics.
Particularly, we apply a propensity score matching. It consists of running a
logistic regression, whose dependent variable is binary, HSR = 1, if participate;
HSR = 0 , otherwise obtaining the propensity score,
p ( x) = Pr(HSR = 1 X = x) .
log ⎡ p
⎢
(1− p)⎦
⎣
⎤⎥ , where
It consists of equalling both groups with relation to some characteristics to reduce the heterogeneity. These are the unemployment rate, the percentage of foreign labour force and an economic activity index reported by “la Caixa” at a municipality level, obtained as a function of the total collection of taxes on economic activities.
Once we have identified the most similar cities to those, which have a HSR station, we build concentric circles of 10 kilometres, as in the original sample. Lastly, we estimate the impact of the operation of a high-speed line on employment.
2.3. Static versus dynamic model
The econometric strategy to estimate the impact of the HSR on the employment density is as follows. Considering the two databases, we will examine the data using panel data with fixed effects estimation that allows us to eliminate unobservable effects at the municipal level, such as topographical features, institutional design and geographical location, which remain unchanged over time. But, this approach does not capture the dynamics of employment.
The alternative approach is to estimate the impact using dynamic panel data estimation methods, including lags of the dependent variable as explanatory ones. Thanks to the use of instrumental variables, we can control for the endogeneity. Econometric endogeneity arises because the inclusion of lagged
Additional Economic Effects and Externalities in Transport Infrastructures
dependent variable is going to be correlate with the fixed effects and, therefore, estimates are biased and inconsistency.
2.3.1. Fixed effects
Considering only the fixed effects approach, the function to estimate is:
ln (denemp)
= β0 + β1 populationit + β2 ln (vehicles)
+ β3denfinit +
it it
(1)
β4retpopit + δ1HSRit + δ2timet +Uit
Employment density, the dependent variable, is expressed in logarithms, where the subscript i represents the municipality and t the year. We estimate a log-linear function whose coefficients must be interpreted as a percentage of change in the employment density for unitary changes of the exogenous variables. Moreover, estimations consider the use of clustered standard errors for robustness. Clusters are built at municipal level.
Fixed effects model assists in controlling for unobserved heterogeneity when this heterogeneity is constant over time and correlated with independent variables. This constant can be removed from the data through differencing, for example by taking a first difference, which will remove any time invariant components of the model.
These invariant components are not observable and are usually associated
to historical, geographical and institutional factors for municipalities,
αi . Since
αi is not observable, it cannot be directly controlled for, and the procedure
eliminates αi
by demeaning the variables using the within transformation.
Another alternative to the within transformation is to add a dummy variable for each municipality i but, we would require that the number of time observations per municipality, is much larger than the number of individuals in the panel, that is not the case.
Moreover, it would be interesting to include a variable to capture the distance from the centre of the municipality to the station, but fixed effects eliminate this possibility. This variable is constant in the time component and estimations are unable to estimate its coefficient. To solve this problem, we will provide the same analysis for a larger area of 20 km. The comparison between
Additional Economic Effects and Externalities in Transport Infrastructures
both areas will provide information about the spatial dynamic of the employment density.
First, we examine the problem considering influence areas of 10 km around the stations of HSR for the two samples considered in the article. Table 2.3 shows the estimations related with the equation (1) previously presented.
Table 2.3. Fixed effects estimations
Explanatory variables | Original database | Matching database |
population | 1.2 ⋅ 10-6 (4.65⋅ 10-6)** | 1.54⋅ 10-5 (7.53⋅ 10-6) *** |
ln (vehicles) | 0.031 (3.12 ⋅ 10-3)*** | 0.093 (0.026)*** |
denfin | 0.061 (0.026)** | 5.69⋅ 10-6 (6.35 ⋅ 10-5) |
retpop | -8,627.47 (1023.69)*** | -6,532.59 (1,563.89)*** |
HSR | 0.173 (0.039)*** | 0.14 (0.036)*** |
time | 0.011 (6.66 ⋅ 10-4)*** | 0.013 (2.18 ⋅ 10-3)*** |
intercept | 3.93 (0.04)*** | 3.94 (0.18)*** |
Observations | 36,715 | 5,746 |
Municipalities | 3,146 | 519 |
F test | 161.32*** | 3,721.8*** |
R2 | 0.32 | 0.43 |