COMUNE DI TROIA
COMUNE DI TROIA
(Provincia di Foggia)
denominazione progetto:
Fondo Per lo Sviluppo e Coesione 2007-2013 Accordo di programma quadro
"Settore Aree Urbane - Città"
Realizzazione di n. 18 alloggi di edilizia residenziale pubblica nella zona P.E.E.P. del Comune di TROIA (FG)
importo finanziamento:
€ 1.400.000,00
livello progettazione:
PROGETTO ESECUTIVO
(art.93 comma 5. D.Lgs 163/2006)
data:
Marzo 2015
allegato:
6
1:100
scala:
denominazione relazione:
Relazione di calcolo strutture
ufficio progettazione:
UFFICIO TECNICO COMUNALE
ing. Xxxxxxxxx XX XXXXXX
Geom. Xxxxxx XXXXXX
SUPPORTO ALLA PROGETTAZIONE
xxx. Xxxxxxxxx XXXXX
IL RESPONSABILE UNICO DEL PROCEDIMENTO
xxx. Xxxxxxx XXXXXXXXXX
1 - DESCRIZIONE GENERALE DELL’OPERA
Il presente documento è stato redatto a corredo del Progetto per la realizzazione di n. 18 alloggi di edilizia economica e popolare nell’ambito del Fondo Per lo Sviluppo e Coesione 2007 2013 Delibera CIPE n. 92/12 DGR n. 2787 del 14/12/2012. La struttura sarà realizzata in cemento armato e fondata su travi rovesce con piano di posa delle fondazioni alla profondità di 2.20 m da piano campagna.
Vengono riportate di seguito due viste assonometriche contrapposte, allo scopo di consentire una migliore comprensione della struttura oggetto della presente relazione:
Vista Anteriore
La direzione di visualizzazione (bisettrice del cono ottico), relativamente al sistema di riferimento globale 0,X,Y, Z, ha versore (1;1;-1)
Vista Posteriore
La direzione di visualizzazione (bisettrice del cono ottico), relativamente al sistema di riferimento globale 0,X,Y, Z, ha versore (-1;-1;-1)
2 - NORMATIVA DI RIFERIMENTO
Le fasi di analisi e verifica della struttura sono state condotte in accordo alle seguenti disposizioni normative, per quanto applicabili in relazione al criterio di calcolo adottato dal progettista, evidenziato nel prosieguo della presente relazione:
Legge 5 novembre 1971 n. 1086 (G. U. 21 dicembre 1971 n. 321)
”Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica”
Legge 2 febbraio 1974 n. 64 (G. U. 21 marzo 1974 n. 76)
”Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche”
Indicazioni progettive per le nuove costruzioni in zone sismiche a cura del Ministero per la Ricerca scientifica - Roma 1981.
D. M. Infrastrutture Trasporti 14 gennaio 2008 (G.U. 4 febbraio 2008 n. 29 - Suppl. Ord.) ”Norme tecniche per le Costruzioni”
Inoltre, in mancanza di specifiche indicazioni, ad integrazione della norma precedente e per quanto con esse non in contrasto, sono state utilizzate le indicazioni contenute nella:
Circolare 2 febbraio 2009 n. 617 del Ministero delle Infrastrutture e dei Trasporti (G.U. 26 febbraio 2009 n. 27 – Suppl. Ord.)
“Istruzioni per l'applicazione delle 'Norme Tecniche delle Costruzioni' di cui al D.M. 14 gennaio 2008”.
3 - MATERIALI IMPIEGATI E RESISTENZE DI CALCOLO
Per la realizzazione dell’opera in oggetto saranno impiegati i seguenti materiali:
MATERIALI CALCESTRUZZO ARMATO
Caratteristiche calcestruzzo armato
Nid | γk | αT, i | E | G | CErid | Stz | Rck | Rcm | %Rck | γc | fcd | fctd | fcfm | n | n Ac |
[N/m3] | [1/°C] | [N/mm2] | [X/xx0] | [%] | [X/xx0] | [X/xx0] | [X/xx0] | [X/xx0] | [X/xx0] | ||||||
Cls C32/40_B450C - (C32/40) | |||||||||||||||
001 | 25,000 | 0.000010 | 33,643 | 14,018 | 100 | P | 40.00 | - | 0.85 | 1.50 | 18.81 | 2.17 | 3.72 | 15 | 002 |
LEGENDA:
Nid Numero identificativo del materiale, nella relativa tabella dei materiali.
γk Peso specifico.
αT, i Coefficiente di dilatazione termica.
E Modulo elastico normale.
G Modulo elastico tangenziale.
CErid Coefficiente di riduzione del Modulo elastico normale per Analisi Sismica [Esisma = E∙cErid ].
Stz Tipo di situazione: [F] = di Fatto (Esistente); [P] = di Progetto (Nuovo).
Rck Resistenza caratteristica cubica.
Rcm Resistenza media cubica.
%Rck Percentuale di riduzione della Rck
γc Coefficiente parziale di sicurezza del materiale.
fcd Resistenza di calcolo a compressione.
fctd Resistenza di calcolo a trazione.
fcfm Resistenza media a trazione per flessione.
n Ac Identificativo, nella relativa tabella materiali, dell'acciaio utilizzato: [-] = parametro NON significativo per il materiale.
MATERIALI ACCIAIO
Caratteristiche acciaio
Nid | γk | αT, i | E | G | Stz | fyk,1/ fyk,2 | ftk,1/ ftk,2 | fyd,1/ fyd,2 | ftd | γs | γM1 | γM2 | γM3,SLV | γM3,SLE | γM7 |
[X/x0] | [0/xX] | [X/xx0] | [X/xx0] | [X/xx0] | [X/xx0] | [X/xx0] | [X/xx0] | ||||||||
Acciaio B450C - (B450C) | |||||||||||||||
002 | 78,500 | 0.000010 | 210,000 | 80,769 | P | 450.00 | - | 391.30 | - | 1.15 | - | - | - | - | - |
- | - |
LEGENDA:
Nid Numero identificativo del materiale, nella relativa tabella dei materiali.
γk Peso specifico.
αT, i Coefficiente di dilatazione termica.
E Modulo elastico normale.
G Modulo elastico tangenziale.
Stz Tipo di situazione: [F] = di Fatto (Esistente); [P] = di Progetto (Nuovo).
ftk,1 Resistenza caratteristica a Rottura (per profili <= 40 mm).
ftk,2 Resistenza caratteristica a Rottura (per profili 40 mm < t <= 80 mm).
ftd Resistenza di calcolo a Rottura (Bulloni).
γs Coefficiente parziale di sicurezza allo SLV del materiale.
γM1 Coefficiente parziale di sicurezza per instabilità.
γM2 Coefficiente parziale di sicurezza per sezioni tese indebolite.
γM3,SLV Coefficiente parziale di sicurezza per scorrimento allo SLV (Bulloni).
γM3,SLE Coefficiente parziale di sicurezza per scorrimento allo SLE (Bulloni).
γM7 Coefficiente parziale di sicurezza precarico bulloni ad alta resistenza (Bulloni): [-] = parametro NON significativo per il materiale.
fyk,1 Resistenza caratteristica allo snervamento (per profili con t <= 40 mm).
fyk,2 Resistenza caratteristica allo snervamento (per profili con 40 mm < t <= 80 mm).
fyd,1 Resistenza di calcolo (per profili con t <= 40 mm).
fyd,2 Resistenza di calcolo (per profili con 40 mm < t <= 80 mm).
NOTE [-] = Parametro non significativo per il materiale.
I valori dei parametri caratteristici dei suddetti materiali sono riportati anche nei tabulati di calcolo, nella relativa sezione.
Tutti i materiali impiegati dovranno essere comunque verificati con opportune prove di laboratorio secondo le prescrizioni della vigente Normativa.
I diagrammi costitutivi del calcestruzzo sono stati adottati in conformità alle indicazioni riportate al punto 4.1.2.1.2.2 del D.M. 14 gennaio 2008; in particolare per le verifiche effettuate a pressoflessione retta e pressoflessione deviata è adottato il modello riportato in fig. (a).
Diagrammi di calcolo tensione/deformazione del calcestruzzo.
I valori di deformazione assunti sono:
εc2 = 0,0020;
εcu2 = 0,0035.
I diagrammi costitutivi dell’acciaio sono stati adottati in conformità alle indicazioni riportate al punto 4.1.2.1.2.3 del D.M. 14 gennaio 2008; in particolare è adottato il modello elastico perfettamente plastico rappresentato in fig. (b).
La resistenza di calcolo è data da fyk/γf. Il coefficiente di sicurezza γf si assume pari a 1.15.
4 - TERRENO DI FONDAZIONE
Le indagini effettuate, mirate alla valutazione della velocità delle onde di taglio (VS30) e/o del numero di colpi dello Standard Penetration Test (NSPT), permettono di classificare il profilo stratigrafico, ai fini della determinazione dell’azione sismica, di categoria E [E - Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m].
Tutti i parametri che caratterizzano i terreni di fondazione sono riportati nei tabulati di calcolo, nella relativa sezione. Per ulteriori dettagli si rimanda alle relazioni geologica e geotecnica.
5 - ANALISI DEI CARICHI
Un’accurata valutazione dei carichi è un requisito imprescindibile di una corretta progettazione, in particolare per le costruzioni realizzate in zona sismica.
Essa, infatti, è fondamentale ai fini della determinazione delle forze sismiche, in quanto incide sulla valutazione delle masse e dei periodi propri della struttura dai quali dipendono i valori delle
accelerazioni (ordinate degli spettri di progetto).
La valutazione dei carichi e dei sovraccarichi è stata effettuata in accordo con le disposizioni del Decreto Ministero Infrastrutture Trasporti 14 gennaio 2008 (G. U. 4 febbraio 2008, n. 29 - Suppl.Ord.) “Norme tecniche per le Costruzioni”
La valutazione dei carichi permanenti è effettuata sulle dimensioni definitive.
Le analisi effettuate, corredate da dettagliate descrizioni, oltre che nei tabulati di calcolo nella relativa sezione, sono di seguito riportate:
ANALISI CARICHI
Analisi carichi
Nid | T. C. | Descrizione del Carico | Tipologie di Carico | Peso Proprio | Permanente NON Strutturale | Sovraccarico Accidentale | Caric o Neve | |||
Descrizione | PP | Descrizione | PNS | Descrizione | SA | |||||
[N/m2] | ||||||||||
001 | S | muratura esterna poroton 800 s= 30 | Carico Permanente | pesp proprio | 2,450 | intonaco interno, esterno e oannello fono assorbente | 740 | 0 | 0 | |
002 | S | divisori scale ed appartamenti | Carico Permanente | peso prorprio | 1,950 | intonaco interno ed esterno | 600 | 0 | 0 | |
003 | S | Doppia fodera 34cm (12+12) | Carico Permanente | Fodera esterna (12 cm) e fodera interna (12 cm) | 1,920 | Intonaco interno, intonaco esterno, isolante poliuretano espanso | 740 | 0 | 0 | |
004 | S | PARETE IN C.A | Carico Permanente | PESO PROPRIO | 750 | INTONACO, IMPERMEABILIZZANTE | 700 | 0 | 0 | |
005 | S | Soletta Abitaz. | Abitazioni | *vedi le relative tabelle dei carichi | - | Pavimento e sottofondo, incidenza dei tramezzi e intonaco inferiore | 2,360 | Civile abitazione (Cat. A – Tab. 3.1.II - DM 14.01.2008) | 2,000 | 0 |
Rimesse e parcheggi | ||||||||||
006 | S | Platea | Abitazioni | *vedi le relative tabelle dei carichi | - | Sottofondo e pavimento di tipo industriale in calcestruzzo | 2,000 | per il transito di automezzi di peso a pieno carico fino a 30 kN (Cat. F – Tab. 3.1.II - | 2,500 | 0 |
DM 14.01.2008) | ||||||||||
Xxxxxxx, xxxxxxxx e | ||||||||||
007 | S | Scala | Scale | *vedi le relative tabelle dei carichi | - | Pavimento, sottofondo e intonaco | 1,360 | scale comuni (Cat. C2 – Tab. 3.1.II - | 4,000 | 0 |
DM 14.01.2008) | ||||||||||
008 | S | LatCem Cop. acc. H22 | Coperture | Solaio di tipo tradizionale latero-cementizio di spessore 22 cm (18+4) | 3,050 | Manto di copertura, impermeabilizzazione e intonaco inferiore | 1,360 | Coperture praticabili di locali di abitazione (Cat. H2 – Tab. 3.1.II - DM 14.01.2008) | 2,000 | 1,000 |
000 | X | XxxXxx Abitazione H24 | Abitazioni | Solaio di tipo tradizionale latero-cementizio di spessore 24 cm (20+4) | 3,280 | Pavimento e sottofondo, incidenza dei tramezzi e intonaco inferiore | 3,360 | Civile abitazione (Cat. A – Tab. 3.1.II - DM 14.01.2008) | 2,000 | 0 |
010 | S | LatCem Abitazione H22 | Abitazioni | Solaio di tipo tradizionale latero-cementizio di spessore 22 cm (18+4) | 3,050 | Pavimento e sottofondo, incidenza dei tramezzi e intonaco inferiore | 2,360 | Civile abitazione (Cat. A – Tab. 3.1.II - DM 14.01.2008) | 2,000 | 0 |
011 | S | LatCem Balcone H22 | Abitazioni | Solaio di tipo tradizionale latero-cementizio di spessore 22 cm (18+4) | 3,050 | Pavimento, sottofondo e intonaco inferiore | 1,360 | Balconi, ballatoi e scale comuni (Cat. C2 – Tab. 3.1.II - DM 14.01.2008) | 4,000 | 0 |
LEGENDA:
Nid Numero identificativo dell'analisi di carico.
T. C. Identificativo del tipo di carico: [S] = Superficiale - [L] = Lineare - [C] = Concentrato.
PP, PNS, SA
Valori rispettivamente, del Peso Proprio, del Sovraccarico Permanente NON strutturale, del Sovraccarico Accidentale. Secondo il tipo di carico indicato nella colonna ''T.C.'' (''S'' - ''L'' - ''C''), i valori riportati nelle colonne ''PP'', ''PNS'' e ''SA'', sono espressi in [N/m2] per carichi Superficiali, [N/m] per carichi Lineari, [N] per carichi Concentrati.
6 - VALUTAZIONE DELL’AZIONE SISMICA
L’azione sismica è stata valutata in conformità alle indicazioni riportate al capitolo 3.2 del D.M.
14 gennaio 2008 “Norme tecniche per le Costruzioni”.
In particolare il procedimento per la definizione degli spettri di progetto per i vari Stati Limite per cui sono state effettuate le verifiche è stato il seguente:
• definizione della Vita Nominale e della Classe d’Uso della struttura, il cui uso combinato ha portato alla definizione del Periodo di Riferimento dell’azione sismica.
c
• Individuazione, tramite latitudine e longitudine, dei parametri sismici di base ag, F0 e T* per tutti e
quattro gli Stati Limite previsti (SLO, SLD, SLV e SLC); l’individuazione è stata effettuata interpolando tra i 4 punti più vicini al punto di riferimento dell’edificio.
• Determinazione dei coefficienti di amplificazione stratigrafica e topografica.
• Calcolo del periodo Tc corrispondente all’inizio del tratto a velocità costante dello Spettro.
I dati così calcolati sono stati utilizzati per determinare gli Spettri di Progetto nelle verifiche agli Stati Limite considerate.
Si riportano di seguito le coordinate geografiche del sito rispetto al Datum ED50:
Latitudine | Longitudine | Altitudine |
[°] | [°] | [m] |
41.3622 | 15.3092 | 439 |
6.1 Verifiche di regolarità
Sia per la scelta del metodo di calcolo, sia per la valutazione del fattore di struttura adottato, deve essere effettuato il controllo della regolarità della struttura.
La tabella seguente riepiloga, per la struttura in esame, le condizioni di regolarità in pianta ed in altezza soddisfatte.
REGOLARITÀ DELLA STRUTTURA IN PIANTA | |
La configurazione in pianta è compatta e approssimativamente simmetrica rispetto a due direzioni ortogonali, in relazione alla distribuzione di masse e rigidezze | NO |
Il rapporto tra i lati di un rettangolo in cui la costruzione risulta inscritta è inferiore a 4 | NO |
Nessuna dimensione di eventuali rientri o sporgenze supera il 25 % della dimensione totale della costruzione nella corrispondente direzione | NO |
Gli orizzontamenti possono essere considerati infinitamente rigidi nel loro piano rispetto agli elementi verticali e sufficientemente resistenti | SI |
REGOLARITÀ DELLA STRUTTURA IN ALTEZZA | |
Tutti i sistemi resistenti verticali (quali telai e pareti) si estendono per tutta l’altezza della costruzione | SI |
Massa e rigidezza rimangono costanti o variano gradualmente, senza bruschi cambiamenti, dalla base alla sommità della costruzione (le variazioni di massa da un orizzontamento all’altro non superano il 25 %, la rigidezza non si riduce da un orizzontamento a quello sovrastante più del 30% e non aumenta più del 10%); ai fini della rigidezza si possono considerare regolari in altezza strutture dotate di pareti o nuclei in c.a. o pareti e nuclei in muratura di sezione costante sull’altezza o di telai controventati in acciaio, ai quali sia affidato almeno il 50% dell’azione sismica alla base | NO |
Nelle strutture intelaiate progettate in CD “B” il rapporto tra resistenza effettiva e resistenza richiesta dal calcolo non è significativamente diverso per orizzontamenti diversi (il rapporto fra la resistenza effettiva e quella richiesta, calcolata ad un generico orizzontamento, non deve differire più del 20% | NO |
dall’analogo rapporto determinato per un altro orizzontamento); può fare eccezione l’ultimo | ||
orizzontamento di strutture intelaiate di almeno tre orizzontamenti | ||
Eventuali restringimenti della sezione orizzontale della costruzione avvengono in modo graduale da | ||
un orizzontamento al successivo, rispettando i seguenti limiti: ad ogni orizzontamento il rientro non | ||
supera il 30% della dimensione corrispondente al primo orizzontamento, né il 20% della dimensione corrispondente all’orizzontamento immediatamente sottostante. Fa eccezione l’ultimo | SI | |
orizzontamento di costruzioni di almeno quattro piani per il quale non sono previste limitazioni di | ||
restringimento |
La rigidezza è calcolata come rapporto fra il taglio complessivamente agente al piano e δ, spostamento relativo di piano (il taglio di piano è la sommatoria delle azioni orizzontali agenti al di sopra del piano considerato).
Tutti i valori calcolati ed utilizzati per le verifiche sono riportati nei tabulati di calcolo nella relativa sezione.
La struttura è pertanto:
• NON REGOLARE in pianta
• NON REGOLARE in altezza
6.2 Classe di duttilità
La classe di duttilità è rappresentativa della capacità dell’edificio di dissipare energia in campo anelastico per azioni cicliche ripetute.
Le deformazioni anelastiche devono essere distribuite nel maggior numero di elementi duttili, in particolare le travi, salvaguardando in tal modo i pilastri e soprattutto i nodi travi pilastro che sono gli elementi più fragili.
Il D.M. 14 gennaio 2008 definisce due tipi di comportamento strutturale:
a) comportamento strutturale non-dissipativo;
b) comportamento strutturale dissipativo.
Per strutture con comportamento strutturale dissipativo si distinguono due livelli di Capacità Dissipativa o Classi di Duttilità (CD).
- CD”A” (Alta);
- CD”B” (Bassa).
La differenza tra le due classi risiede nell’entità delle plasticizzazioni cui ci si riconduce in fase di progettazione; per ambedue le classi, onde assicurare alla struttura un comportamento dissipativo e duttile evitando rotture fragili e la formazione di meccanismi instabili imprevisti, si fa ricorso ai procedimenti tipici della gerarchia delle resistenze.
La struttura in esame è stata progettata in classe di duttilità classe "BASSA".
6.3 Spettri di Progetto per S.L.U. e S.L.D.
L’edificio è stato progettato per una Vita Nominale pari a 50 e per Classe d’Uso pari a 2.
In base alle indagini geognostiche effettuate si è classificato il suolo di fondazione di categoria E, cui corrispondono i seguenti valori per i parametri necessari alla costruzione degli spettri di risposta orizzontale e verticale:
Parametri di pericolosità sismica
Stato Limite | ag | FO | T*c | CC | TB | TC | TD | SS |
[g] | [s] | [s] | [s] | [s] | [s] | |||
SLO | 0.0470 | 2.406 | 0.290 | 1.89 | 0.182 | 0.547 | 1.788 | 1.60 |
SLD | 0.0588 | 2.507 | 0.328 | 1.80 | 0.197 | 0.590 | 1.835 | 1.60 |
SLV | 0.1471 | 2.606 | 0.445 | 1.59 | 0.236 | 0.707 | 2.188 | 1.58 |
SLC | 0.1921 | 2.586 | 0.488 | 1.53 | 0.249 | 0.748 | 2.368 | 1.45 |
Per la definizione degli spettri di risposta, oltre all’accelerazione ag al suolo (dipendente dalla classificazione sismica del Comune) occorre determinare il Fattore di Struttura q.
Il Fattore di struttura q è un fattore riduttivo delle forze elastiche introdotto per tenere conto delle capacità dissipative della struttura che dipende dal sistema costruttivo adottato, dalla Classe di Duttilità e dalla regolarità in altezza.
Si è inoltre assunto il Coefficiente di Amplificazione Topografica ST pari a 1.00.
Tali succitate caratteristiche sono riportate negli allegati tabulati di calcolo al punto “DATI GENERALI ANALISI SISMICA”.
Per la struttura in esame sono stati determinati i seguenti valori:
Stato Limite di salvaguardia della Vita
Fattore di Struttura q per sisma orizzontale in direzione X: 2.76 Fattore di Struttura q per sisma orizzontale in direzione Y: 2.76 Fattore di Struttura q per sisma verticale: 1.50
Di seguito si esplicita il calcolo del fattore di struttura utilizzato per il sisma orizzontale:
Dir. X:
• tipologia tab. 7.4.I D.M. 14/01/2008: A telaio, miste equivalenti a telaio
• tipologia strutturale: con più campate
• αu/α1,X: 1.15
• fattore di riduzione qo (kw): 1.00
Dir. Y:
• tipologia tab. 7.4.I D.M. 14/01/2008: A telaio, miste equivalenti a telaio
• tipologia strutturale: con più campate
• αu/α1,Y: 1.15
• fattore di riduzione qo (kw): 1.00
regolarità in pianta: NON REGOLARE
regolarità in altezza: NON REGOLARE
Il fattore di struttura è calcolato secondo la relazione (7.3.1) del § 7.3.1 del D.M. 14/01/2008:
q=qoxKR
dove:
qo è il valore massimo del fattore di struttura che dipende dal livello di duttilità attesa, dalla tipologia strutturale e dal rapporto αu/α1 tra il valore dell’azione sismica per il quale si verifica la formazione di un numero di cerniere plastiche tali da rendere la struttura labile e quello per il quale il primo elemento strutturale raggiunge la plasticizzazione a flessione;
KR è un fattore riduttivo che dipende dalle caratteristiche di regolarità in altezza della costruzione, con valore pari ad 1 per costruzioni regolari in altezza e pari a 0,8 per costruzioni non regolari in altezza.
N.B: Per le costruzioni regolari in pianta, qualora non si proceda ad un'analisi non lineare finalizzata alla valutazione del rapporto αu/α1, per esso possono essere adottati i valori indicati nei § 7.4.3.2 del D.M. 14/01/2008 per le diverse tipologie costruttive. Per le costruzioni non regolari in pianta, si possono adottare valori di αu/α1 pari alla media tra 1,0 ed i valori di volta in volta forniti per le diverse tipologie costruttive.
Gli spettri utilizzati sono riportati nella successiva figura.
6.4 Metodo di Analisi
Il calcolo delle azioni sismiche è stato eseguito in analisi dinamica modale, considerando il comportamento della struttura in regime elastico lineare.
Il numero di modi di vibrazione considerato (12) ha consentito, nelle varie condizioni, di mobilitare le seguenti percentuali delle masse della struttura:
Stato Limite | Direzione Sisma | % |
salvaguardia della vita | X | 87.7 |
salvaguardia della vita | Y | 86.5 |
salvaguardia della vita | Z | 100.0 |
Per valutare la risposta massima complessiva di una generica caratteristica E, conseguente alla sovrapposizione dei modi, si è utilizzata una tecnica di combinazione probabilistica definita CQC (Complete Quadratic Combination - Combinazione Quadratica Completa):
i, j=1,n
∑ρij ⋅ Ei ⋅ E j
3
E = 8 ⋅ ξ2 ⋅ (1 + βij )⋅ β 2
β = ϖi
dove:
con
ρij =
2 2
ij
1j
( 2)1 − β + 4 ⋅ ξ ⋅ β
ij
ϖ
ij ⋅ (1 + β2 )
ij
j
n è il numero di modi di vibrazione considerati
ξ è il coefficiente di smorzamento viscoso equivalente espresso in percentuale;
βij è il rapporto tra le frequenze di ciascuna coppia i-j di modi di vibrazione.
Le sollecitazioni derivanti da tali azioni sono state composte poi con quelle derivanti da carichi verticali, orizzontali non sismici secondo le varie combinazioni di carico probabilistiche. Il calcolo è stato effettuato mediante un programma agli elementi finiti le cui caratteristiche verranno descritte nel seguito.
Il calcolo degli effetti dell’azione sismica è stato eseguito con riferimento alla struttura spaziale, tenendo cioè conto degli elementi interagenti fra loro secondo l’effettiva realizzazione escludendo i tamponamenti. Non ci sono approssimazioni su tetti inclinati, piani sfalsati o scale, solette, pareti irrigidenti e nuclei.
Si è tenuto conto delle deformabilità taglianti e flessionali degli elementi monodimensionali; muri, pareti, setti, solette sono stati correttamente schematizzati tramite elementi finiti a tre/quattro nodi con comportamento a guscio (sia a piastra che a lastra).
Sono stati considerati sei gradi di libertà per nodo; in ogni nodo della struttura sono state applicate le forze sismiche derivanti dalle masse circostanti.
Le sollecitazioni derivanti da tali forze sono state poi combinate con quelle derivanti dagli altri carichi come prima specificato.
6.5 Valutazione degli spostamenti
Gli spostamenti dE della struttura sotto l’azione sismica di progetto allo SLV si ottengono moltiplicando per il fattore μd i valori dEe ottenuti dall’analisi lineare, dinamica o statica, secondo l’espressione seguente:
dove
dE = ± μd ∙ dEe
μd = q se T1 ≥ TC
μd =1+(q-1)∙TC/T1 se T1 < TC
In ogni caso μd ≤ 5q – 4.
6.6 Combinazione delle componenti dell’azione sismica
Le azioni orizzontali dovute al sisma sulla struttura vengono convenzionalmente determinate come agenti separatamente in due direzioni tra loro ortogonali prefissate. In generale, però, le componenti orizzontali del sisma devono essere considerate come agenti simultaneamente. A tale scopo, la combinazione delle componenti orizzontali dell'azione sismica è stata tenuta in conto come segue:
• gli effetti delle azioni dovuti alla combinazione delle componenti orizzontali dell'azione sismica sono stati valutati mediante le seguenti combinazioni:
EEdX ± 0.30EEdY EEdY ± 0.30EEdX
dove:
EEdX rappresenta gli effetti dell’azione dovuti all'applicazione dell’azione sismica lungo l'asse orizzontale X scelto della struttura;
EEdY rappresenta gli effetti dell’azione dovuti all'applicazione dell’azione sismica lungo l'asse orizzontale Y scelto della struttura.
L'azione sismica verticale deve essere considerata in presenza di: elementi pressoché orizzontali con luce superiore a 20 m, elementi pressoché orizzontali precompressi, elementi a sbalzo pressoché orizzontali con luce maggiore di 5 m, travi che sostengono colonne, strutture isolate.
La combinazione della componente verticale del sisma, qualora portata in conto, con quelle orizzontali è stata tenuta in conto come segue:
• gli effetti delle azioni dovuti alla combinazione delle componenti orizzontali e verticali del sisma sono stati valutati mediante le seguenti combinazioni:
EEdX ± 0.30EEdY ± 0.30EEdZ EEdY ± 0.30EEdX ± 0.30EEdZ EEdZ ± 0.30EEdX ± 0.30EEdY
dove:
EEdX e EEdY sono gli effetti dell’azione sismica nelle direzioni orizzontali prima definite;
EEdZ rappresenta gli effetti dell’azione dovuti all'applicazione della componente verticale dell’azione sismica di progetto.
6.7 Eccentricità accidentali
Per valutare le eccentricità accidentali, previste in aggiunta all’eccentricità effettiva sono state considerate condizioni di carico aggiuntive ottenute applicando l’azione sismica nelle posizioni del centro di massa di ogni piano ottenute traslando gli stessi, in ogni direzione considerata, di una distanza pari a
+/- 5% della dimensione massima del piano in direzione perpendicolare all’azione sismica.
7 - AZIONI SULLA STRUTTURA
I calcoli e le verifiche sono condotti con il metodo semiprobabilistico degli stati limite secondo le indicazioni del D.M. 14 gennaio 2008.
I carichi agenti sui solai, derivanti dall’analisi dei carichi, vengono ripartiti dal programma di calcolo in modo automatico sulle membrature (travi, pilastri, pareti, solette, platee, ecc.).
I carichi dovuti ai tamponamenti, sia sulle travi di fondazione che su quelle di piano, sono schematizzati come carichi lineari agenti esclusivamente sulle aste.
Su tutti gli elementi strutturali è inoltre possibile applicare direttamente ulteriori azioni concentrate e/o distribuite (variabili con legge lineare ed agenti lungo tutta l’asta o su tratti limitati di essa).
Le azioni introdotte direttamente sono combinate con le altre (carichi permanenti, accidentali e sisma) mediante le combinazioni di carico di seguito descritte; da esse si ottengono i valori probabilistici da impiegare successivamente nelle verifiche.
7.1 Stato Limite di Salvaguardia della Vita
Le azioni sulla costruzione sono state cumulate in modo da determinare condizioni di carico tali da risultare più sfavorevoli ai fini delle singole verifiche, tenendo conto della probabilità ridotta di intervento simultaneo di tutte le azioni con i rispettivi valori più sfavorevoli, come consentito dalle norme vigenti.
Per gli stati limite ultimi sono state adottate le combinazioni del tipo:
dove:
γ G1 ⋅G1 + γ G2 ⋅G2 + γ P ⋅ P + γ Q1 ⋅Qk1 + γ Q2 ⋅ψ 02 ⋅Qk 2 + γ Q3 ⋅x 00 ⋅Qk 3 + .......
(1)
G1 rappresenta il peso proprio di tutti gli elementi strutturali; peso proprio del terreno, quando pertinente; forze indotte dal terreno (esclusi gli effetti di carichi variabili applicati al terreno); forze risultanti dalla pressione dell’acqua (quando si configurino costanti nel tempo);
G2 rappresenta il peso proprio di tutti gli elementi non strutturali; P rappresenta l'azione di pretensione e/o precompressione;
Q azioni sulla struttura o sull’elemento strutturale con valori istantanei che possono risultare sensibilmente diversi fra loro nel tempo:
- di lunga durata: agiscono con un’intensità significativa, anche non continuativamente, per un tempo non trascurabile rispetto alla vita nominale della struttura;
- di breve durata: azioni che agiscono per un periodo di tempo breve rispetto alla vita nominale della struttura;
Qki rappresenta il valore caratteristico della i-esima azione variabile;
xx, xx ,xx coefficienti parziali come definiti nella tabella 2.6.I del DM 14 gennaio 2008;
ψ0i sono i coefficienti di combinazione per tenere conto della ridotta probabilità di concomitanza delle azioni variabili con i rispettivi valori caratteristici.
Le 42 combinazioni risultanti sono state costruite a partire dalle sollecitazioni caratteristiche calcolate per ogni condizione di carico elementare: ciascuna condizione di carico accidentale, a rotazione, è stata considerata sollecitazione di base (Qk1 nella formula precedente).
I coefficienti relativi a tali combinazioni di carico sono riportati negli allegati tabulati di calcolo.
In zona sismica, oltre alle sollecitazioni derivanti dalle generiche condizioni di carico statiche, devono essere considerate anche le sollecitazioni derivanti dal sisma. L’azione sismica è stata combinata con le altre azioni secondo la seguente relazione:
G1 + G2 + P + E + ∑ i ψ2i ⋅ Qki
dove:
E rappresenta l'azione sismica per lo stato limite in esame; G1 rappresenta peso proprio di tutti gli elementi strutturali;
G2 rappresenta il peso proprio di tutti gli elementi non strutturali; P rappresenta l'azione di pretensione e/o precompressione;
ψ2i coefficiente di combinazione delle azioni variabili Qi; Qki valore caratteristico dell’azione variabile Qi.
Gli effetti dell’azione sismica sono valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:
GK + ∑i (ψ2i ⋅ Qki ) .
I valori dei coefficienti ψ2i sono riportati nella seguente tabella:
Categoria/Azione | ψ2i |
Categoria A – Ambienti ad uso residenziale | 0,3 |
Categoria B – Uffici | 0,3 |
Categoria C – Ambienti suscettibili di affollamento | 0,6 |
Categoria D – Ambienti ad uso commerciale | 0,6 |
Categoria E – Biblioteche, archivi, magazzini e ambienti ad uso industriale | 0,8 |
Categoria F – Rimesse e parcheggi (per autoveicoli di peso ≤ 30 kN) | 0,6 |
Categoria G – Rimesse e parcheggi (per autoveicoli di peso > 30 kN) | 0,3 |
Categoria H – Coperture | 0,0 |
Vento | 0,0 |
Neve (a quota ≤ 1000 m s.l.m.) | 0,0 |
Neve (a quota > 1000 m s.l.m.) | 0,2 |
Variazioni termiche | 0,0 |
Le verifiche strutturali e geotecniche delle fondazionii, sono state effettuate con l’Approccio 2 come definito al p. 2.6.1 del DM 14/01/2008, attraverso la combinazione A1+M1+R3. Le azioni sono state amplificate tramite i coefficienti della colonna A1 (STR) definiti nella tabella 6.2.I del DM 14/01/2008.
I valori di resistenza del terreno sono stati ridotti tramite i coefficienti della colonna M1 definiti nella
6.2.II del DM 14/01/2008.
I valori calcolati delle resistenze totali dell’elemento strutturale sono stati divisi per i coefficienti R3 della tabella 6.4.I del DM 14/01/2008 per le fondazioni superficiali.
Si è quindi provveduto a progettare le armature di ogni elemento strutturale per ciascuno dei valori ottenuti secondo le modalità precedentemente illustrate. Nella sezione relativa alle verifiche dei “Tabulati di calcolo” in allegato sono riportati, per brevità, i valori della sollecitazione relativi alla combinazione cui corrisponde il minimo valore del coefficiente di sicurezza.
7.2 Stato Limite di Danno
L’azione sismica, ottenuta dallo spettro di progetto per lo Stato Limite di Xxxxx, è stata combinata con le altre azioni mediante una relazione del tutto analoga alla precedente:
G1 + G2 + P + E + ∑ i ψ2i ⋅ Qki
dove:
E rappresenta l'azione sismica per lo stato limite in esame; G1 rappresenta peso proprio di tutti gli elementi strutturali;
G2 rappresenta il peso proprio di tutti gli elementi non strutturali P rappresenta l'azione di pretensione e/o precompressione;
ψ2i coefficiente di combinazione delle azioni variabili Qi; Qki valore caratteristico dell’azione variabile Qi.
Gli effetti dell’azione sismica sono valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:
ki
GK + ∑i (ψ2i ⋅ Q )
I valori dei coefficienti ψ2i sono riportati nella tabella di cui allo SLV.
7.3 Stati Limite di Esercizio
Allo Stato Limite di Esercizio le sollecitazioni con cui sono state semiprogettate le aste in c.a. sono state ricavate applicando le formule riportate nel D.M. 14 gennaio 2008 - Norme tecniche per le costruzioni - al punto 2.5.3. Per le verifiche agli stati limite di esercizio, a seconda dei casi, si fa riferimento alle seguenti combinazioni di carico:
∑Gkj + P + Qk1 + ∑ψ0i ⋅ Qki
rara
frequente
quasi permanente
j≥1
i>1
∑Gkj + P + ψ11 ⋅ Qk1 + ∑ψ2i ⋅ Qki
j≥1
i>1
∑Gkj + P + ∑ψ2i ⋅ Qki
j≥1 i>1
dove:
Gkj valore caratteristico della j-esima azione permanente;
Pkh valore caratteristico della h-esima deformazione impressa;
Qkl valore caratteristico dell’azione variabile di base di ogni combinazione; Qki valore caratteristico della i-esima azione variabile;
ψ0i coefficiente atto a definire i valori delle azioni ammissibili di durata breve ma ancora significativi nei riguardi della possibile concomitanza con altre azioni variabili;
ψ1i coefficiente atto a definire i valori delle azioni ammissibili ai frattili di ordine 0,95 delle distribuzioni dei valori istantanei;
ψ2i coefficiente atto a definire i valori quasi permanenti delle azioni ammissibili ai valori medi delle distribuzioni dei valori istantanei.
Ai coefficienti ψ0i, ψ1i, ψ2i sono attribuiti i seguenti valori:
Azione | ψ0i | ψ1i | ψ2i |
Categoria A – Ambienti ad uso residenziale | 0,7 | 0,5 | 0,3 |
Categoria B – Uffici | 0,7 | 0,5 | 0,3 |
Categoria C – Ambienti suscettibili di affollamento | 0,7 | 0,7 | 0,6 |
Categoria D – Ambienti ad uso commerciale | 0,7 | 0,7 | 0,6 |
Categoria E – Biblioteche, archivi, magazzini e ambienti ad uso industriale | 1,0 | 0,9 | 0,8 |
Categoria F – Rimesse e parcheggi (per autoveicoli di peso ≤ 30 kN) | 0,7 | 0,7 | 0,6 |
Categoria G – Rimesse e parcheggi (per autoveicoli di peso > 30 kN) | 0,7 | 0,5 | 0,3 |
Categoria H – Coperture | 0,0 | 0,0 | 0,0 |
Vento | 0,6 | 0,2 | 0,0 |
Neve (a quota ≤ 1000 m s.l.m.) | 0,5 | 0,2 | 0,0 |
Neve (a quota > 1000 m s.l.m.) | 0,7 | 0,5 | 0,2 |
Variazioni termiche | 0,6 | 0,5 | 0,0 |
In maniera analoga a quanto illustrato nel caso dello SLU le combinazioni risultanti sono state costruite a partire dalle sollecitazioni caratteristiche calcolate per ogni condizione di carico; a turno ogni condizione di carico accidentale è stata considerata sollecitazione di base (Qk1 nella formula (1)), con ciò dando origine a tanti valori combinati. Per ognuna delle combinazioni ottenute, in funzione dell’elemento (trave, pilastro, etc...) sono state effettuate le verifiche allo SLE (tensioni, deformazioni e fessurazione).
Negli allegati tabulati di calcolo sono riportanti i coefficienti relativi alle combinazioni di calcolo generate relativamente alle combinazioni di azioni "Quasi Permanente" (1), "Frequente" (4) e "Rara" (4).
Nelle sezioni relative alle verifiche allo SLE dei citati tabulati, inoltre, sono riportati i valori delle sollecitazioni relativi alle combinazioni che hanno originato i risultati più gravosi.
8 - CODICE DI CALCOLO IMPIEGATO
8.1 Denominazione
Nome del Software | EdiLus |
Versione | 30.00b |
Caratteristiche del Software | Software per il calcolo di strutture agli elementi finiti per Windows |
Numero di serie | 11060466 |
Intestatario Licenza | XXXXXXXX ing. XXXXXXX |
Produzione e Distribuzione | ACCA software S.p.A. Xxx Xxxxxxxxxxxx Xxxxxxxxxx 00000 Xxxxxxxx (XX) Tel. 0827/69504 r.a. - Fax 0827/601235 |
8.2 Sintesi delle funzionalità generali
Il pacchetto consente di modellare la struttura, di effettuare il dimensionamento e le verifiche di tutti gli elementi strutturali e di generare gli elaborati grafici esecutivi.
È una procedura integrata dotata di tutte le funzionalità necessarie per consentire il calcolo
completo di una struttura mediante il metodo degli elementi finiti (FEM); la modellazione della struttura è realizzata tramite elementi Beam (travi e pilastri) e Shell (platee, pareti, solette, setti, travi-parete).
L’input della struttura avviene per oggetti (travi, pilastri, solai, solette, pareti, etc.) in un ambiente grafico integrato; il modello di calcolo agli elementi finiti, che può essere visualizzato in qualsiasi momento in una apposita finestra, viene generato dinamicamente dal software.
Apposite funzioni consentono la creazione e la manutenzione di archivi Sezioni, Materiali e Carichi; tali archivi sono generali, nel senso che sono creati una tantum e sono pronti per ogni calcolo, potendoli comunque integrare/modificare in ogni momento.
L'utente non può modificare il codice ma soltanto eseguire delle scelte come:
• definire i vincoli di estremità per ciascuna asta (vincoli interni) e gli eventuali vincoli nei nodi (vincoli esterni);
• modificare i parametri necessari alla definizione dell’azione sismica;
• definire condizioni di carico;
• definire gli impalcati come rigidi o meno.
Il programma è dotato di un manuale tecnico ed operativo. L'assistenza è effettuata direttamente dalla casa produttrice, mediante linea telefonica o e-mail.
Il calcolo si basa sul solutore agli elementi finiti MICROSAP prodotto dalla società TESYS srl. La scelta di tale codice è motivata dall’elevata affidabilità dimostrata e dall’ampia documentazione a disposizione, dalla quale risulta la sostanziale uniformità dei risultati ottenuti su strutture standard con i risultati internazionalmente accettati ed utilizzati come riferimento.
Tutti i risultati del calcolo sono forniti, oltre che in formato numerico, anche in formato grafico permettendo così di evidenziare agevolmente eventuali incongruenze.
Il programma consente la stampa di tutti i dati di input, dei dati del modello strutturale utilizzato, dei risultati del calcolo e delle verifiche dei diagrammi delle sollecitazioni e delle deformate.
8.3 Sistemi di Riferimento
8.3.1 Riferimento globale
Il sistema di riferimento globale, rispetto al quale va riferita l'intera struttura, è costituito da una terna di assi cartesiani sinistrorsa O,X,Y,Z (X,Y, e Z sono disposti e orientati rispettivamente secondo il pollice, l'indice ed il medio della mano destra, una volta posizionati questi ultimi a 90° tra loro).
8.3.2 Riferimento locale per travi
j
i
3
M2
j
M1
i
M3
3
2 2
1 1
L'elemento Trave è un classico elemento strutturale in grado di ricevere Carichi distribuiti e Carichi Nodali applicati ai due nodi di estremità; per effetto di tali carichi nascono, negli estremi, sollecitazioni di taglio, sforzo normale, momenti flettenti e torcenti.
Definiti i e j i nodi iniziale e finale della Trave, viene individuato un sistema di assi cartesiani 1-2-3 locale all'elemento, con origine nel Nodo i così composto:
• asse 1 orientato dal nodo i al nodo j;
• assi 2 e 3 appartenenti alla sezione dell’elemento e coincidenti con gli assi principali d’inerzia della sezione stessa.
Le sollecitazioni verranno fornite in riferimento a tale sistema di riferimento:
1. Sollecitazione di Trazione o Compressione T1 (agente nella direzione i-j);
2. Sollecitazioni taglianti T2 e T3, agenti nei due piani 1-2 e 1-3, rispettivamente secondo l'asse 2 e l'asse 3;
3. Sollecitazioni che inducono flessione nei piani 1-3 e 1-2 (M2 e M3);
4. Sollecitazione torcente M1.
8.3.3 Riferimento locale per pilastri
j
i
3
T1
T3
j
T2
T3 i T2
T1
M1
j
i
M3
M2
1 1 1
3 3
2 2
2
Definiti i e j come i due nodi iniziale e finale del pilastro, viene individuato un sistema di assi cartesiani 1-2-3 locale all'elemento, con origine nel Nodo i così composto:
• asse 1 orientato dal nodo i al nodo j;
• asse 2 perpendicolare all' asse 1, parallelo e discorde all'asse globale Y;
• asse 3 che completa la terna destrorsa, parallelo e concorde all'asse globale X.
Tale sistema di riferimento è valido per Pilastri con angolo di rotazione pari a '0' gradi; una rotazione del pilastro nel piano XY ha l'effetto di ruotare anche tale sistema (ad es. una rotazione di '90' gradi porterebbe l'asse 2 a essere parallelo e concorde all’asse X, mentre l'asse 3 sarebbe parallelo e concorde all'asse globale Y). La rotazione non ha alcun effetto sull'asse 1 che coinciderà sempre e comunque con l'asse globale Z.
Per quanto riguarda le sollecitazioni si ha:
• una forza di trazione o compressione T1, agente lungo l’asse locale 1;
• due forze taglianti T2 e T3 agenti lungo i due assi locali 2 e 3;
• due vettori momento (flettente) M2 e M3 agenti lungo i due assi locali 2 e 3;
• un vettore momento (torcente) M1 agente lungo l’asse locale nel piano 1.
8.3.4 Riferimento locale per pareti
Una parete è costituita da una sequenza di setti; ciascun 1
setto è caratterizzato da un sistema di riferimento locale
1-2-3 così individuato:
• asse 1, coincidente con l’asse globale Z;
• asse 2, parallelo e discorde alla linea d’asse della traccia del setto in pianta;
• asse 3, ortogonale al piano della parete, che completa la terna levogira.
Su ciascun setto l’utente ha la possibilità di applicare uno
o più carichi uniformemente distribuiti comunque 3
orientati nello spazio; le componenti di tali carichi
possono essere fornite, a discrezione dell’utente, rispetto 2
al riferimento globale X,Y,Z oppure rispetto al riferimento
locale 1,2,3 appena definito.
Si rende necessario, a questo punto, meglio precisare le modalità con cui XxxXxx restituisce i risultati di calcolo.
Nel modello di calcolo agli elementi finiti ciascun setto è discretizzato in una serie di elementi tipo ”shell” interconnessi; il solutore agli elementi finiti integrato nel programma EdiLus, definisce un riferimento locale per ciascun elemento shell e restituisce i valori delle tensioni esclusivamente rispetto a tali riferimenti.
Il software EdiLus provvede ad omogeneizzare tutti i valori riferendoli alla terna 1-2-3. Tale operazione consente, in fase di input, di ridurre al mimino gli errori dovuti alla complessità d’immissione dei dati stessi ed allo stesso tempo di restituire all’utente dei risultati facilmente interpretabili.
Tutti i dati cioè, sia in fase di input che in fase di output, sono organizzati secondo un criterio razionale vicino al modo di operare del tecnico e svincolato dal procedimento seguito dall’elaboratore elettronico.
In tal modo ad esempio, il significato dei valori delle tensioni può essere compreso con immediatezza non solo dal progettista che ha operato con il programma ma anche da un tecnico terzo non coinvolto nell’elaborazione; entrambi, così, potranno controllare con facilità dal tabulato di calcolo, la congruità dei valori riportati.
Un'ultima notazione deve essere riservata alla modalità con cui il programma fornisce le armature delle pareti, con riferimento alla faccia anteriore e posteriore.
La faccia anteriore è quella di normale uscente concorde all'asse 3 come prima definito o, identicamente, quella posta alla destra dell'osservatore che percorresse il bordo superiore della parete concordemente al verso di tracciamento.
8.3.5 Riferimento locale per solette
In maniera analoga a quanto avviene per i setti, ciascuna soletta è caratterizzata da un sistema di riferimento locale 1,2,3 così definito:
• asse 1, coincidente con la direzione principale di armatura;
• asse 2, coincidente con la direzione secondaria di armatura;
• asse 3, ortogonale al piano della parete, che completa la terna levogira.
8.3.6 Riferimento locale per platee
Anche per le platee, analogamente a quanto descritto per le solette, è definito un sistema di riferimento locale 1,2,3:
• asse 1, coincidente con la direzione principale di armatura;
• asse 2, coincidente con la direzione secondaria di armatura;
• asse 3, ortogonale al piano della parete, che completa la terna levogira.
8.4 Modello di Calcolo
Il modello della struttura viene creato automaticamente dal codice di calcolo, individuando i vari elementi strutturali e fornendo le loro caratteristiche geometriche e meccaniche.
Viene definita un’opportuna numerazione degli elementi (nodi, aste, shell) costituenti il modello, al fine di individuare celermente ed univocamente ciascun elemento nei tabulati di calcolo.
Qui di seguito è fornita una rappresentazione grafica dettagliata della discretizzazione operata con evidenziazione dei nodi e degli elementi.
Vista Anteriore
Vista Posteriore
Dalle illustrazioni precedenti si evince come le aste, sia travi che pilastri, siano schematizzate con un tratto flessibile centrale e da due tratti (braccetti) rigidi alle estremità. I nodi vengono posizionati sull’asse verticale dei pilastri, in corrispondenza dell’estradosso della trave più alta che in esso si collega. Tramite i braccetti i tratti flessibili sono quindi collegati ad esso.
In questa maniera il nodo risulta perfettamente aderente alla realtà poiché vengono presi in conto tutti gli eventuali disassamenti degli elementi con gli effetti che si possono determinare, quali momenti flettenti/torcenti aggiuntivi.
Le sollecitazioni vengono determinate, com’è corretto, solo per il tratto flessibile. Sui tratti rigidi, infatti, essendo (teoricamente) nulle le deformazioni le sollecitazioni risultano indeterminate.
Questa schematizzazione dei nodi viene automaticamente realizzata dal programma anche
quando il nodo sia determinato dall’incontro di più travi senza il pilastro, o all’attacco di travi/pilastri con elementi shell.
8.5 Progetto e Verifica degli elementi strutturali
La verifica degli elementi allo SLU avviene col seguente procedimento:
• si costruiscono le combinazioni non sismiche in base al D.M. 14.01.2008, ottenendo un insieme di sollecitazioni;
• si combinano tali sollecitazioni con quelle dovute all'azione del sisma secondo quanto indicato nel
§ 2.5.3, relazione (2.5.5) del D.M. 14/01/2008.
• per sollecitazioni semplici (flessione retta, taglio, etc.) si individuano i valori minimo e massimo con cui progettare o verificare l’elemento considerato; per sollecitazioni composte (pressoflessione retta/deviata) vengono eseguite le verifiche per tutte le possibili combinazioni e solo a seguito di ciò si individua quella che ha originato il minimo coefficiente di sicurezza.
8.5.1 Verifiche di Resistenza
Per quanto concerne il progetto degli elementi in c.a. illustriamo, in dettaglio, il procedimento seguito quando si è in presenza di pressoflessione deviata (pilastri e trave di sezione generica):
• per tutte le terne Mx, My, N, individuate secondo la modalità precedentemente illustrata, si calcola il coefficiente di sicurezza in base alla formula 4.1.10 del D.M. 14 gennaio 2008, effettuando due verifiche a pressoflessione retta con la seguente formula:
⎛ M ⎞α
⎛ M ⎞α
⎜ Ex ⎟
⎝ MRx ⎠
+ ⎜ Ey ⎟ ≤ 1
⎜ MRy ⎟
⎝ ⎠
dove:
MEx, MEy sono i valori di calcolo delle due componenti di flessione retta dell’azione attorno agli assi di flessione X ed Y del sistema di riferimento locale;
MRx, MRy sono i valori di calcolo dei momenti resistenti di pressoflessione retta corrispondenti allo sforzo assiale NEd valutati separatamente attorno agli assi di flessione.
L’esponente α può dedursi in funzione della geometria della sezione, della percentuale meccanica dell’armatura e della sollecitazione di sforzo normale agente.
• se per almeno una di queste terne la relazione 4.1.10 non è rispettata, si incrementa l’armatura variando il diametro delle barre utilizzate e/o il numero delle stesse in maniera iterativa fino a quando la suddetta relazione è rispettata per tutte le terne considerate.
Sempre quanto concerne il progetto degli elementi in c.a. illustriamo in dettaglio il procedimento seguito per le travi verificate/semiprogettate a pressoflessione retta:
• per tutte le coppie Mx, N, individuate secondo la modalità precedentemente illustrata, si calcola il coefficiente di sicurezza in base all'armatura adottata;
• se per almeno una di queste coppie esso è inferiore all'unità, si incrementa l’armatura variando il diametro delle barre utilizzate e/o il numero delle stesse in maniera iterativa fino a quando il coefficiente di sicurezza risulta maggiore o al più uguale all’unità per tutte le coppie considerate.
Nei tabulati di calcolo, per brevità, non potendo riportare una così grossa mole di dati, si riporta la terna Mx, My, N, o la coppia Mx, N che ha dato luogo al minimo coefficiente di sicurezza.
Una volta semiprogettate le armature allo SLU, si procede alla verifica delle sezioni allo Stato Limite di Esercizio con le sollecitazioni derivanti dalle combinazioni rare, frequenti e quasi permanenti; se necessario, le armature vengono integrate per far rientrare le tensioni entro i massimi valori previsti.
Successivamente si procede alle verifiche alla deformazione, quando richiesto, ed alla fessurazione che, come è noto, sono tese ad assicurare la durabilità dell’opera nel tempo.
8.5.2 Gerarchia delle Resistenze
Relativamente agli elementi in c.a., sono state applicate le disposizioni contenute al § 7.4.4 del
D.M. 14/01/2008. Più in particolare:
• per le travi, al fine di escludere la formazione di meccanismi inelastici dovuti al taglio, le sollecitazioni di calcolo si ottengono sommando il contributo dovuto ai carichi gravitazionali agenti sulla trave, considerata incernierata agli estremi, alle sollecitazioni di taglio corrispondenti alla formazione delle cerniere plastiche nella trave e prodotte dai momenti resistenti delle due sezioni di di estremità, amplificati del fattore di sovraresistenza γRd assunto pari, rispettivamente, ad 1,20 per strutture in CD”A”, ad 1,00 per strutture in CD”B”. La verifica di resistenza è eseguita secondo le indicazioni del § 7.4.4.1.2.2.
• per i pilastri, al fine di scongiurare l’attivazione di meccanismi fragili globali, come il meccanismo di “piano debole” che comporta la plasticizzazione, anticipata rispetto alle travi, di gran parte dei pilastri di un piano, il progetto a flessione delle zone dissipative dei pilastri è effettuato considerando le sollecitazioni corrispondenti alla resistenza delle zone dissipative delle travi amplificata mediante il coefficiente γRd che vale 1,3 in CD “A” e 1,1 per CD “B”. In tali casi, generalmente, il meccanismo dissipativo prevede la localizzazione delle cerniere alle estremità delle travi e le sollecitazioni di progetto dei pilastri possono essere ottenute a partire dalle resistenze d’estremità delle travi che su di essi convergono, facendo in modo che, per ogni nodo trave-pilastro ed ogni direzione e verso dell’azione sismica, la resistenza complessiva dei pilastri sia maggiore della resistenza complessiva delle travi amplificata del coefficiente γRd, in accordo con la formula (7.4.4) delle NTC. Le verifiche di resistenza sono eseguite secondo le indicazioni del § 7.4.4.2.2.1.
Al fine di escludere la formazione di meccanismi inelastici dovuti al taglio, le sollecitazioni di calcolo da utilizzare per le verifiche ed il dimensionamento delle armature si ottengono dalla condizione di equilibrio del pilastro soggetto all’azione dei momenti resistenti nelle sezioni di estremità superiore ed inferiore secondo l’espressione (7.4.5). Le verifiche di resistenza sono eseguite secondo le indicazioni del § 7.4.4.2.2.2.
• per i nodi trave-pilastro, si deve verificare che la resistenza del nodo sia tale da assicurare che non pervenga a rottura prima delle zone della trave e del pilastro ad esso adiacente. L’azione di taglio, agente in direzione orizzontale per le varie direzioni del sisma, nel nucleo di calcestruzzo del nodo è calcolata secondo l’espressione (7.4.6) per i nodi interni e (7.4.7) per quelli esterni. Le verifiche di resistenza sono eseguite invece secondo le indicazioni del § 7.4.4.3.1.
• per i setti sismo resistenti, le sollecitazioni di calcolo sono determinate secondo quanto indicato nel § 7.4.4.5.1. Le verifiche di resistenza sono eseguite invece secondo le indicazioni del § 7.4.4.5.2.
Per quanto riguarda la struttura di fondazione sono applicate le disposizioni contenute al §
7.2.5 del D.M. 14/01/2008. Più in particolare:
• le azioni trasmesse in fondazione derivano dall’analisi del comportamento dell’intera struttura, condotta esaminando la sola struttura in elevazione alla quale sono applicate le azioni statiche e sismiche;
• per le strutture progettate sia in CD“A” che in CD“B” il dimensionamento della struttura di fondazione e la verifica di sicurezza del complesso fondazione-terreno sono eseguite assumendo come azioni in fondazione le resistenze degli elementi strutturali soprastanti. Più precisamente, la forza assiale negli elementi strutturali verticali derivante dalla combinazione delle azioni di cui al § 3.2.4 è associata al concomitante valore del momento flettente e del taglio ottenuto amplificando le azioni trasferite dagli elementi soprastanti con un γRd pari a 1,1 in CD“B” e 1,3 in CD“A”.
I risultati delle suddette verifiche sono riportate nei tabulati di calcolo.
9 - PROGETTAZIONE DEI SOLAI
Il solaio è un elemento strutturale fondamentale la cui principale funzione è quella di trasferire i carichi e i sovraccarichi verticali alla struttura portante. In zona sismica il solaio assume anche la funzione di trasferire le forze inerziali di piano alla struttura principale, nell’ipotesi che esso sia dotato di sufficiente rigidità nel proprio piano.
La vigente normativa per le costruzioni in cemento armato individua le seguenti tipologie di solaio:
• Solai in getto pieno (Tipo I)
• Solai misti in c.a. e c.a.p. con elementi di alleggerimento (Tipo II)
• Solai con elementi prefabbricati in c.a. e c.a.p. (Tipo III)
Nella struttura oggetto della presente relazione, in considerazione delle caratteristiche geometriche e dei sovraccarichi, si è deciso di adottare solai di tipo:
Xxxxx latero-cementizi gettati in opera
I solai latero-cementizi gettati in opera sono costituiti da blocchi di laterizio, muniti di alette laterali o accompagnati da fondelli sempre in laterizio, che vengono posizionati su un impalcato di sostegno provvisorio. Quest’ultimo viene smontato non appena il conglomerato ha raggiunto una resistenza meccanica sufficiente. Dopo aver sistemato tutti i blocchi e prima di procedere con il getto dei travetti e della soletta in calcestruzzo, si posizionano i ferri di armatura ricorrendo all'uso di distanziatori o di sistemi equivalenti in modo da assicurare che, nella fase di getto, i ferri mantengano una corretta disposizione.
Solai con travetti prefabbricati in c.a.p.
I solai con travetti prefabbricati in c.a.p. sono solai misti in laterizio e cemento armato. I travetti prefabbricati, a seconda delle loro caratteristiche, hanno capacità portanti più o meno elevate e sono in grado, quindi, di sostenere da soli il peso dei laterizi e del getto di completamento in calcestruzzo, aiutati solo da elementi rompitratta situati ad intervalli regolari. Inoltre, rispetto al solaio gettato in opera, conservano comunque una discreta flessibilità di adattamento anche a fabbricati di pianta complessa.
I travetti in c.a.p. sono indicati soprattutto in presenza di luci o carichi elevati o quando è difficoltosa la realizzazione di un puntellamento adeguato poiché posseggono capacità autoportanti superiore ai travetti prefabbricati in c.a. ordinario.
Le dimensioni e l’armatura di precompressione, realizzata con acciai ad alta resistenza, variano a seconda del campo di utilizzazione, mentre l’armatura destinata ad assorbire i momenti flettenti negativi deve essere posizionata in opera poco prima del getto di completamento finale.
Modello di calcolo
Il solaio è composto da un’alternanza di travetti in cemento armato (precompresso o non) con elementi di alleggerimento in laterizio e da una soletta di completamento in cemento armato che, coprendone tutta la superficie ed inglobando una opportuna armatura di ripartizione, rende i vari elementi tra loro solidali.
La presenza della soletta fa sì che il solaio sia per certi versi assimilabile ad una piastra caricata in direzione perpendicolare al piano stesso (ricordiamo che una piastra è in grado di trasferire i carichi alle strutture portanti perimetrali diffondendoli lungo la propria superficie).
Questa marcata eterogeneità consente, nel calcolo, di approssimare il comportamento del solaio con quello di una trave, quindi con una struttura monodimensionale trascurando le sollecitazioni che si sviluppano in direzione ortogonale ai travetti.
Grazie a quest’assunzione, un solaio su una o più campate può essere modellato, in linea generale, come una trave continua su appoggi (o incastri cedevoli).
Le luci delle singole campate sono assunte pari alla distanza tra gli interassi degli appoggi. I carichi distribuiti linearmente sulla trave sono ottenuti moltiplicando i carichi per unità di superficie determinati nell’analisi dei carichi per l’ampiezza della fascia di solaio considerata. Le caratteristiche dei vincoli adottati sono riportate in dettaglio, per ciascun appoggio, negli allegati tabulati di calcolo.
Per quanto non espressamente riportato in questo paragrafo, ed in particolare per le analisi dei carichi, la determinazione delle azioni agenti sulla struttura, la definizione del modello strutturale agli elementi finiti e le verifiche, può farsi riferimento a quanto illustrato nella restante parte della presente relazione e negli allegati “Tabulati di Calcolo”.
10 - TABULATI DI CALCOLO
Per quanto non espressamente sopra riportato, ed in particolar modo per ciò che concerne i dati numerici di calcolo, si rimanda all'allegato "Tabulati di calcolo" costituente parte integrante della presente relazione.
..., 27/02/2015
Il progettista strutturale
XXX. XXXXXXXXX XXXXX
Per presa visione, il direttore dei lavori
...
Per presa visione, il collaudatore
...