Contract
(7) ctītct ltitt mtctÙt
(8) Ûttǐt, mtctÙt ltitt otjt`
n.ytt`ūtitt˜Ctlt:
(1) ytn¸Fto ct`ī it¸CtvtKtC[, ytn¸FtotW ctīt ǐtIt¸òtct mtcttFtctlÙt‘ Sct˙ ctnòtct mtcttFtctlÙt‘ Sct˙ GvtctW mt˙yt˙Ot, Mt`utFtīǐt utct`Ùt, mtjǐt Ùt¸itFtlt mtctt`ctījCt, t˜ÉIttlt mtctt`ctījCt
(2) mtct¸ÛÛtÙt t˜mtætvlt: mtct¸ÛÛtÙt, GFt mtct¸ÛÛtÙt, Gt˜Ûtlt GFtmtct¸ÛÛtÙt, t˜jct:lt mtct¸ÛÛtÙt, mtct¸ÛÛtÙttW ct`ī ytt`Ût mt˙t˜›tīÙttÙt`˙ (mt˙It, utt˜ltÛÚ`o, stvltj, mtt˜ctt˜ctlt stvltj), yt`vt-sttj`Kt
3.j`Kttitt˜Ctlt:
(1) t˜$tYt¸pt, sttÙtlt, ctit‘ mtctǐtcyt Ûtlt¸Yt‘¸pt Sct˙ ct˛òt ctīt` jÛtvtt Sct˙ Gvtct`ī it¸Ct mtyt˙Xxx` utct`Ùt ltitt Ftt˜jcttFt Sct˙ Gvtct`ī #t`$tFtīǐt,
(2) itt`ǐtt, mtctctīt`Ctt`Ùt ct˛òttctītj yt`ǐtvt, mtctctīt`Ctt`Ùt ct˛òttctītj Mt˙ct¸ī ltitt Itvt ct`ī sttÙtltvt Sct˙ Ft˛‰ #t`$tFtīǐtı
4. mtt˙t˜K*tctât`: stt˙ctī.[tW ctīt mt˙«tn, stt˙ctī.[tW ctīt ctitt´ctījCt, yttjcyttjltt, yttjcyttjltt yt˙švt, mttjCtt`Ùtvt, mt˙ÛtÙtt` yttjcyttjltt, stt˙ctī.[tW ctīt t˜vtvFtCt, oC[Ûttš‘, FttF‘ Ûttš‘, sttÙtlt t˜Ût$t, yttjcyttltt ytn¸Yt¸pt, mt˙ÛtÙtt` yttjcyttjltt ct›tī, ct`īvõt`Ùt utct˛tò˜ t ctīt` cttFt- mtcttvltj cttOÙt, cttt˜OÙtctīt Sct˙ ytn¸ǐtctīı
General English Upto Class X Level
1. Comprehension
2. Active Voice and Passive Voice
3. Parts of Speech
4. Transformation of Sentences
5. Direct and Indirect Speech
6. Punctuation and Spellings
7. Words meanings
8. Vocabulory & Usage
9. Idioms and Phrases
10. Fill in the Blanks
mttcttv*t t˜nvot` (ntF‘mct˛âīt mltj ltctâ) ct`â Ftt9˛*t›tâct ctW mtt˜cctt˜ītlt t˜ctâ*t` ūttvt` āttīt` t˜āt<t*t
(1) t˜nvot` ctCt‘cttǐtt, t˜ctjtct t˜Ûtvn,
(2) Mtyo jÛtvtt, cttct:Ùt jÛtvtt, stit‘
(3) Mtyo-vFt
(4) mt˙t˜Ot, mtcttmt
(5) t˜›tīÙttÙtW
(6) stvt`ctītitt´ Mtyo
(7) t˜ctǐtt`ct Mtyo
(8) FtÙtt‘ÙtcttÛtt` Mtyo
(9) ct¸ntctj` Sct˙ ǐtt`ctīt`t˜òtīÙtt˙
(10) ltlmtct Sct˙ lto˛Ytct, o`Mtpt, t˜cto`Mtt` (Mtyo Yt˙[tj)
(11) ctlt‘vtt`
(12) stit‘ytt`Ot
(13) t˜nvot` Yttutt ct`ī utÙtt`it ctW nt`vt` cttǐtt` stMt¸t˜æÙttB
(14) G0ut0 ctīt` ct¸KÙt ytt`t˜ǐtÙttB
Ftt˜jt˜Mt°-6
ct¸K*t Ftjt`#tt n`lt¸ t˜vto´Mt ltstt Ftt9*t›tâct
1. sttÙtt`it utct`Mt Ft$t ct`ī t˜ytvtt t˜ctīmtt` Ytt` stYÙtitt´ ctīt` Ftjt`#tt ctW mtt˜cctt˜ǐtlt nt`vt` ctīt` stvt¸ctt˜lt vtntR oWit`ı t˜ctīmtt` Ytt` stYÙtitt´ ct`ī Ftjt`#tt ctW utct`Mt n`lt¸ stn‘ltt/ Ftt$tltt ct`ī mtcytvOt ctW sttÙtt`it ctīt t˜vtCt‘Ùt st˙t˜ltct nt`ittı n. stYÙtt˜it‘ÙttW ctīt` mtÛt`lt t˜ctīÙtt pttltt n“ t˜ctī Gòtj Ft¸t˜mltctīt ctW ct`īctǐt t˜vtOtt‘t˜jlt mittvt Ftj nt` stFtvtt stvt¸›tīctt˙ctī t˜ǐtKtW stvÙtitt oC[mctvFt Gvtct`ī st˙ctītW ctW ctīšt“ltt` ctīt` pttÙt`itt`ı stYÙtitt´ Gòtj Ft¸t˜mltctīt ctW ctīnt` Ytt` stFtvtt vttct vt t˜ǐtKtW stvÙtitt GvnW Ftjt`#tt ct`ī t˜ǐtÙt` stvtn‘ Itt`t˜utlt t˜ctīÙtt ptt mtctīltt n“ı 3. Ùtt˜o stYÙtitt´ ctīt` nmltt˜ǐtt˜Ft stmFt°/stFt9vtt`Ùt n“ ltt` Gmtct`ī uttFltt˙ctītW ct`ī ct¸īǐt Ùtti` t ctW mt` ctīšt“ltt` ctīt` ptt mtctīltt` n“ı 4. stYÙtitt´ utMvt- Ft$ttW ct`ī Gòtj st˙«t`ptt` jt`ctvt t˜ǐtt˜Ft ctW stitctt t˜nvot` o`ctvttitjt` t˜ǐtt˜Ft ctW stitctt Go‘t Ftītjmtt` t˜ǐtt˜Ft ctW t˜ǐtKt mtctīlt` n“ Ftjvlt¸ GvnW Yttutt ct`ī utMvt-Ft$t ctīt Gòtj ptyt ltctī ctīt` utMvt ctW stvÙtitt t˜vtt˜o‘° vt nt` stt˜vtcttÙt‘ vFt mt` Gmtt` Yttutt ctW t˜ǐtKtvtt nt`ittı 5. utMvt-Ft$t ct`īctǐt st˙«t`ptt` t˜ǐtt˜Ft ctW ct t˜nvot` o`ctvttitjt` t˜ǐtt˜Ft ctW nt`it`ı 6. mttcttvÙt stOÙtÙtvt Sct˙ ct“ctīt˜ǐFtctī t˜ctutÙttW ct`ī utMvt-Ft$ttW ctīt Ftt9˛Ùt›tīct stvÙtitt Gt˜ǐǐtt˜Ktlt t˜ctctjCt ct`ī stt˜ltt˜jòtī, t˜ctīmtt` t˜ctÕtt˜ctettǐtÙt mt` mvttltctī t˜[«tt`Ottjt` stYÙtitt´ mt` stFt`t˜#tlt mltj ctīt nt`ittı
mttcttv*t ⭲tO*t*tvt-ØtMvt-Ftīt - I
1. Yttjlt ctīt Ft˜ltntmt (uttÛtt`vt,ctOÙtctītǐtt`vt Sct˙ stctt‘Ûtt`vt) n. Yttjltt`Ùt jt°^t`Ùt sttvot`ǐtvt Sct˙ Yttjltt`Ùt mt˙mct˛īt˜lt 3. ptvtmt˙KÙtt,FtÙtt‘ctjCt Sct˙ vtitjt`ctījCt (Yttjltt`Ùt Ftt˜jut`#Ùt ctW) 4. t˜ctÕt ctīt Yttitt`ǐt, Yttjlt ctīt Yttitt`ǐt Sct˙ uttct˛īt˜ltctī mt˙mttOtvt 5. jt°^t`Ùt Sct˙ stvltjt‘°^t`Ùt ctnlctFttCt‘ Itšvtt›tīct 6. Yttjltt`Ùt ct˛īt˜ut, cÙttFttj Sct˙ cttt˜CtpÙt 7. Gòtj uto`Mt ct`ī t˜ctMt`ut mtvoYt‘ ctW t˜Mt#tt, mt˙mct˛īt˜lt, ct˛īt˜ut,cÙttFttj, cttt˜CtpÙt Sct˙ jnvt-mtnvt ltitt mttcttt˜ptctī utittsttW ctīt` t˜ctt˜Mt° pttvtctītjt` Yttjlt ct`ī Ft˜ltntmt stt“j Yttjltt`Ùt mt˙mct˛īt˜lt ctW ǐtitYtit G÷tt`mtcttR Mtlttyot` ct`ī ctOÙt Yttit mt` ǐt`ctīj o`Mt ctīt cÙttFtctī Ft˜ltntmt jn`itt stt“j mttit ctW itt˙Xxx`, š“itt`j stt“j vt`nv mt` mtcytt˜vOtlt utMvt Ytt` mtt˜cctt˜ǐtlt ntWit`ı jt°^t`Ùt ct stvltjt‘°^t`Ùt ctnlct ctīt` ItšvttsttW ctW Kt`ǐt-cttīo mt` mtcytt˜vOtlt mttcttvÙt zttvt ct`ī utMvt Ytt` jnWit`ı
mttcttv*t ⭲tO*t*tvt-ØtMvt-Ftīt - II
1. Yttjltt`Ùt jtpÙt cÙtctmitt n. Yttjltt`Ùt stit‘cÙtctmitt 3. mttcttvÙt t˜ctzttvt, Yttjlt ct`ī t˜ctctītmt ctW t˜ctzttvt stt“j utt“ett`t˜itctī ctīt` Yttt˜ctctīt stt“j utYttct Sct˙ o“t˜vtctī ptt`ctvt ctW t˜ctzttvt ctīt` ctnòtt 4. mttcttvÙt ytt“t˜Éctī Ùtt`iÙtltt 5. mtt˙t˜KÙtctīt` t˜ctMǐt`utCt,ǐt`Kttt˜Ût$t («ttFtī) ltitt sttj`Kt ([tÙt«ttct)
Yttjltt`Ùt jtpÙt cÙtctmitt mt` mtcytt˜vOtlt KtC[ ctW Yttjlt ctīt` jtptvtt`t˜ltctī cÙtctmitt mt` mtcytt˜vOtlt utMvt ntWit`ı Yttjltt`Ùt stit‘cÙtctmitt ctW o`Mt ctīt` sttt˜it‘ctī vtt`t˜lt ct`ī mttcttvÙt ǐt#tCttW ctīt mtcttct`Mt nt`ittıYttjlt ct`ī t˜ctctītmt ctW t˜ctzttvt stt“j utt“ett`ti˜ tctīt` ctīt` Yttt˜ctctīt stt“j Gmtct`ī utYttct mt` mtcytt˜vOtlt KC[ ctW S`mt` utMvt FttÚ` pttÙtWit` ptt` stYÙtitt´ ctīt` Fmt #t`$t ctW pttvtctītjt` ctīt` Ftjt`#tt ctījWı FmtctW uttÙtt`t˜itctī Ft#t Ftj ytǐt t˜oÙtt pttÙt`ittı mtt˙t˜KÙtctīt`Ùt t˜ctMǐt`utCttW ctW sttj`Kt ct t˜Ût$t vFt ctW utmlt¸t˜lt ltitt mttct«tt` ct`ī sttOttj Ftj mtnpt yt¸t˜É ctīt utÙtt`it ctījlt` n¸Ùt` ct¸īÚ t˜vtuctīut‘ t˜vtctītǐtvt` stt“j GmtctW FttÙtt` itÙtt` ctīt˜ctÙtt˙,mtt`cttsttW stt“x x˜ctmt˙itt˜ltÙttW ctīt t˜vtvFtCt ctījvt` ctīt` #tctltt ctīt` Ftjt`#tt nt`itt`ı
t˜vtytvOt
t˜vtytvOt t˜nvot`, st«t`ptt` stitctt Got‘ ctW t˜ǐtKt` ptt mtctīlt` nQı
t˜vtytvOt ct`ī utMvt-Ft$t ctW 3 KtC[ ntWit`ı utlÙt`ctī KtC[ mt` Sctī-Sctī t˜ctutÙt Ftj 700 (mttlt mtt“) MtyotW ct`W t˜vtytvOt t˜ǐtKtvtt nt`ittı utlÙt`ctī KtC[ 50.-50 st˙ctītW ctīt nt`ittı ltt`vttW KtC[tW ctW t˜vtcvtt˜ǐtt˜Ktlt t˜ctutÙttW Ftj sttOttt˜jlt t˜vtytvOt ct`ī utMvt nt`Wit`ı
KtC[ (ctâ) | KtC[ (Kt) | KtC[ (it) |
1.mttt˜nlÙt stt“j mt˙mct˛īt˜lt | 1. t˜ctzttvt FtÙtt‘ctjCt stt“j utt“ett`t˜itctīt` | 1. jt°^t`Ùt Sct˙ st˙ltjt‘°^t`Ùt Itšvtt›tīct |
2.mttcttt˜ptctī #t`$t | 2.sttt˜it‘ctī #t`$t | 2.uttct˛īt˜ltctī sttFtotS˙-Ytt-mKtǐtvt, YttctīcFt, ytt.{, mttKtt stttE˜oı |
3. jtptvt“t˜ltctī #t`$t | 3.ct˛īt˜ut Gett`it Sct˙ cÙttFttj | 3. jtuš^t`Ùt t˜ctctītmt Ùtt`ptvttS˙ Sct˙ Ftt˜jÙtt`ptvttS˙ |
mttcttv*t t˜nvot`
(1) t˜oÙt` n¸S itet KtC[ ctīt stctytt`Ot Sct˙ utMvtt`òtjı (n) mt˙#t`FtCtı (3) mtjctītjt` Sct˙ stOt‘mtjctītjt` Ft$t ǐt`Ktvt, lttj ǐt`Ktvt, ctītÙtt‘ǐtÙt stto`Mt, stt˜OtmttÛtvtt, Ftt˜jFt$t (4) Mtyo zttvt Sct˙ utÙtt`it (⭲t) GFtmtit‘ Sct˙ utlÙtÙt utÙtt`it (yt) t˜ctǐtt`ct Mtyo (mt) cttct:Ùtt˙Mt ct`ī t˜ǐtS Sctī Mtyo (o) ctlt‘vtt` Sct˙ cttct:Ùt Mt¸t˜æ (5) ǐtt`ctīt`t˜ct:lt Sct˙ ct¸ntctj`ı
1. ct˛ât˜<t ØtMvt -Ftīt -1
KtC[ (⭲t): Fttt˜jt˜mitt˜ltctīt`Ùt t˜ctzttvt stt“j cttvtct ct`ī t˜ǐtS Gmtctīt` uttmt˙t˜itctīltt, uttct˛īt˜ltctī mt˙mttOtvt Gmtctīt utytvOt ltitt mt˙j#tCtı FtīmtǐttW ct`ī GlFttovt ltitt t˜ctctjCt ctW cttlttctjCtt`Ùt ctītjctīı FtīmtǐttW ctīt` ct˛t˜æ Ftj ptǐtcttÙt¸ ltlcttW ctīt utYttct ltitt MtmÙt›tīct Ftj ytoǐtlt` cttlttctjCt ctīt utYttctı utott˜utlt cttlttctjCt ltitt Gmtmt` mtcytt˜vOtlt cttvtct,FtMt¸ ltitt Ftīmtǐt ctīt` Ktltj`ı
uto`Mt ct`ī t˜ctt˜Yt÷t ct˛īt˜ut ptǐtcttÙt¸ #t`$t ctW MtmÙt›tīct utCttǐtt` stt˜Otctī GlFttovt ltitt stǐFtctītǐtt`vt t˜ctīmcttW ctīt MtmÙt›tīct utCttǐtt` Ftj utYttctı ytn¸MtmÙtvt, ytn¸ct˙t˜ptǐtt` t˜jǐt` ltitt st˙ltjtMtmÙt ctīt t˜mtætvlt Sct˙ t˜šctītv Kttet GlFttovt ct`ī mtcytvOt ctW ctnlctı utoM` t ct`ī t˜ctt˜Yt÷t #t`$ttW ctW Ktjt`Ftī ltitt jytt` ctt“mtcttW ctW GlFttt˜olt ct¸KÙt stvttpt, oǐtnvt,t˜ltǐtnvt, j`Mtt, Mtct‘ījt ltitt vtitot` Ftīmtǐtt` ct`ī GlFttovt n`lt¸ mt˙#t`Ft°vt jt`t˜ltÙtt˙ı
cttt˜vtctīt` ctīt ctnlct t˜ctMt`utlttS˙ ltitt t˜ctt˜Yt÷t utctītj ct`ī cttt˜vtctīt` Ftt“OttW ctīt utctOt‘vt t˜ctMt`ut ®Ft mt` mttcttt˜ptctī cttt˜vtctīt` ltitt ct˛īt˜ut cttt˜vtctīt` ct`ī mtvoYt‘ ctWı KtjFtltcttj Gvtctīt` t˜ctMt`utlttÙtW ltitt t˜ctt˜Yt÷t FtīmtǐttW ct`ī mttit Gvtctīt mtnÙtt`it ct it¸Ctvtı KtjFtltcttj ctīt mt˙ctOt‘vt, pt“t˜ctctī ltitt jtmttÙtt˜vtctī t˜vtÙt˙v$tCtı ct˛ot t˜vtctt‘Ct ctīt` t˜ctt˜OtÙtt˙ ltitt ctītjctī, Yttjltt`Ùt ct˛otsttW ctīt ctitt´ctījCt, sttOt¸t˜vtctī mt˙ctīǐFtvttsttW mtt˜nltı ct˛otstt`˙ ct`ī Ktt˜vtpt ǐtctCt ltitt ctītyt‘t˜vtctī utcttCt ltitt ct˛ot GlFttoctīltt ytvttÙt` jKtvt` ctW Gvtctīt` Yttt˜ctctītı mtctmÙttlctctī ct˛otS˙ Yttjlt ct` Gvtctīt t˜ctmlttj Sct˙ mt¸Ottjı ct˛ot ltitt Ftt“OttW ct`W sttctMÙtctī FttoFt ltlcttW ct stvÙt ǐttYtctīj ltlcttW ctīt Gætj ltitt Gvtct`ī t˜ctctjCt ct`ī utYtttctctītjt` ctītjctī, Gvtctīt` t˜›tīÙttS˙ ltitt ct˛ot Gct‘jctīltt ct`ī t˜mtætvlt ltitt Gt˜Ûtlt Gct‘jctī utÙtt`it ctīt cttǐÙtt˙ctīvtı ptǐt t˜ctYttptvt ct`ī sttOttj Ftj ct˛ot mt˙j#tCt t˜vtÙtt`ptvtı Ftnt.[t` , Fto Ftnt.[t` ltitt Ittt˜šÙttW ctW stFtjovt ct stFtcttn ctīt utytvOtı Fvtctīt` utYttt˜ctlt ctījvt` cttǐtt` t˜›tīÙttS˙ ltitt ctītjctīı ctjtvtt` ct˛īt˜ut ltitt Gmtmt` mtcytt˜vOtlt mtct˙mÙttS˙ı ctutt‘ Ftj sttOttt˜jlt ct˛īt˜ut #t`$ttW ctW ct˛īt˜ut GlFttovt ctW t˜mitjltt ǐttvt` ctīt` ltctīvtt`ctīı
KtC[ -(yt) MtmÙt GlFttovt mt` mtcytt˜vOtlt ptǐt GFtÙtt`it #tctltt, t˜mt˙ÛttF‘ ›tīct ct`ī sttOttjYttlt cttvtctī t˜mt˙ÛttF‘ ptǐt ct`ī ytto stFtcttn ctīt` ctītct ctījvt` ctīt` t˜ctt˜OtÙtt˙, ptǐtt›tīt˙lt Yttt˜ctmt` ptǐt t˜vtctītmtı ct˛īt˜ut #t`$t utytvOtvt ctīt t˜vtÙtt`ptvt ct ǐt`Ktt ctW ctnlct ct ǐt#tCt ltitt Gmtctīt #t`$t ct˛īt˜ut t˜vtct`°tW ltitt GFtpttW ctīt t˜ctFtCtvt stt“j cttǐÙttW ctīt Glttj Ût.{tct ltitt Gvtctīt` ǐttitlt cÙtÙtı mtnctītt˜jltt ctīt ct˛īt˜ut stit‘cÙtctmitt ctW ctnlct, t˜ctt˜Yt÷t utctītj ctīt` ct˛īt˜ut utCttt˜ǐtÙtt˙ ltitt Gvtctīt` t˜ctīmcttW ltitt Gvtctīt` utYttt˜ctlt ctījvt` cttǐt` ctītjctīı ct˛īt˜ut t˜ctmlttj ctnlct ltitt Yttt˜ctctīt, ct˛īt˜ut t˜ctmlttj utt`«ttcttW ctīt cttǐÙtt˙ctīvt, t˜ctmtjCt, mt˙Ûttj ct vtF‘ ltctīvtt`ctītW ctīt stvt¸mtjCtı ct˛īt˜ut Ùt˙$tt`ctījCt ltitt ct˛īt˜ut GlFttovt ct «ttctt`Ct jt`ptittj ctW Gvtctīt` Yttt˜ctctītı utmttj ctītÙt‘ctīltt‘sttW ct t˜ctīmttvttW ct`ī t˜ǐtS utt˜Mt#tCt ctītÙt‘›tīctı utmttj t˜ctt˜OtÙtt˙ ltitt ctītÙt‘›tīct utt˜Mt#tCt Sct˙ Yt,ctCt, ct˛īt˜ut t˜ctzttvt ct`īvõ, ct˛īt˜ut zttvt ct`īvõ Svt.S.št`.Ftt`.ct sttF‘.ctt`. Sǐt.Ftt`.ı
ØtMvt Ftīt - ıı
KtC[ (⭲t) : sttvt¸ctt˙t˜Mtctīltt stt“x x˜ctt˜Yt÷tltt, ctW[ǐt ctīt stvt¸ctt˙t˜Mtctīltt t˜vtÙtct, ›tīt`ctt`mtt`ct sttvtctt˙t˜Mtctīltt t˜mtætvlt, ctīt`t˜MtctītõcÙtt` ct˙Mttitt˜ltı t˜ǐt˙it mtnǐtivt, t˜ǐt˙it utYttt˜ctlt ltitt t˜ǐt˙it mtt`t˜ctlt it¸Ct, mcttitlt stt“j ut`t˜jlt GlFtt˜jctlt‘vtı GlFtt˜jctlt‘vt ctW jmttÙtvttW ctīt ctnlct FtīmtǐttW ctīt Go˛itct ltitt Itj`ǐttctījCt, Kt`lttW ctW GittÙtt` pttvt` cttǐtt` utct¸Kt FttoFt pttt˜ltÙttW mt` mt˙yt˙t˜Otlt pttt˜ltÙttW ctīt` sttctītt˜jctīt` ltitt t˜ctt˜Yt÷tltt ct`ī mct®Ftı Ftīmtǐt ct`ī mt¸Ottj ct`ī ctītjctī stt“j Fvtct˙` t˜ctt˜Yt÷tltt ctīt GFtÙtt`itı
utct¸Kt Ftīmtǐtt˙` ct`ī mt¸Ottj ctW FttoFt-utptvtvt t˜mtætvlttW ctīt GFtÙtt`it ptvtFtjtitCt stt“j FtjFtjtitCt cttǐtt` FtīmtǐttW ctīt` ptvtvt t˜ctt˜OtÙtt˙ı Ft¸vtŠ mcttFtvtÛtÙtvt ltitt mt˙ctīj stt`pt ltitt mitt`Ùt stmtÙtt`ptctīltt ptvtvt ctW GlFtt˜jctlt‘vt ltitt ytn¸it¸t˜Ctltltt ctīt GFtÙtt`it ytt`pt utt“ett`t˜itctīt` ltitt Gmtctīt ctnlct, ytt`pttW ctīt GlFttovt, mt˙mttOtvt ltitt Ftjt`#tCtıjt°^t`Ùt ct jtpÙt ctīt` ytt`pt t˜vtitcttW ctīt` ytt`pt GlFttovt ctW Yttt˜ctctītı G÷tlt t˜ctīmcttW ct`ī ytt`pttW ctīt mt˙mttOtvt ct t˜ctFtCtvtı
Mtjt`x x˜›tīÙtt t˜ctzttvt ctīt ct˛īt˜ut t˜ctzttvt ctW ctnlctı utt`št`Fǐttpct ct`ī jmttÙtt˜vtctī ct Ytt“t˜ltctī it¸Ct, Mtt`utCt Ft˛‰ltǐt ltvttct t˜ctmtjCt stt“j FtjtmtjCtıptǐt ctīt stctMtt`utCt ltitt mittvttvltjCt, cttuFtt`lmtpt‘vt stt“j ptǐt ctīt` t˜ctltcÙtt˜Ùtlttı
KtC[ (yt) : utt˜›tīCct (FvpttF‘ct) stt“j FttoFt j˙ptctī, utctītMt mt˙Mǐt`utCt ctīt` sttOt¸t˜vtctī mt˙ctīǐFtvttS˙ ltitt Fvt t˜›tīÙttsttW ctīt` utYttt˜ctlt ctījvt` cttǐt` ctītjctī, cttÙtctt`Ùt ct stcttÙtctt`Ùt Õtmtvtı ct˛t˜æ ct t˜ctctītmt, ot`Ft ctītt˜ǐtltt stt“j ytmtvltt`ctījCtı FttoFt t˜vtÙttctctīt`˙ ctīt` ctītÙt‘t˜ctt˜Ot ltitt ct˛īt˜ut GlFttovt ctW ctnlctı utct¸Kt Ftīǐt ct mtt˜yptÙttW ct`ī stFt`t˜#tlt ptǐtcttÙt¸ ltitt Fvtctīt` Kt`ltt` ctīt` mt˙Pt`°vt utitt, mtcttn stt“j Fmtctīt ct“zttt˜vtctī sttOttjı Ftīǐt ct mtyptt` ct`ī ltt`.[vt` ct`ī Ftnǐt` ct ytto ctīt` mt˙Yttǐt ct mt˙mttOtvt, mtyptt` ct FtīǐttW ct`ī Ftt˜jj#tCt ctīt` t˜ctt˜OtÙtt˙, Ftt˜jj#tCt ltctīvtt`ctīt` ltitt GFtctījCtı YttÂuÙt ct Ft¸uFtt`Ùt Ftt“OttW, Fmtct`ī mttit Mtt`Yttctītjt` Ftt“Xxx˙W ctīt` Kt`ltt`, stǐt˙ct˛īlt Ftt“OttW ct`ī utctOt‘vt ltitt Gettvt ctīt` stt˜YtctīǐFtvtt stt“j jÛtvtt uto`Mt ct`ī Ftīǐt, mtyptt` ct Ftt“OttW ctīt` ytt`cttt˜jÙtt˙ stt“j ctīt`š Fvtct`ī t˜vtÙt˙$tCt ctījvt` ctīt` t˜ctt˜OtÙtt˙,
Sctīt`ct˛īlt ctīt`š ct jt`it utytvOtvt ct`ī t˜mtætvlt, ctīt`švttMtt` octtsttW ctīt` mt˙jÛtvtt, Ftīmtǐt mt¸j#tt ct`ī Ùt˙$t ltitt Gvtctīt` o`Kt-j`Ktı stvttpt stt“j oǐtnvt ct`ī YtC[tj ctW vttMtctī ctīt`š Yt˙[tj itt`otcttW ctīt` mctÛÚltt ltitt Gvtct`ī mtcytvOt ctW mttctOttvtt` stt“j stvt¸j#tCtı
Yttjlt ctW Kttet GlFttovt stt“j GFtÙtt`it ctīt` utct˛t˜òtÙtt˙ıjt°^t`Ùt ct stvltjt‘°^t`Ùt Kttet vtt`t˜ltÙtt˙ı mtctit‘vt cttǐÙt Ftj stvttpttW ctīt` Ktjt`ootjt`, t˜ctltjCt mt˙j#tCt ct GlFttovt ctīt` mtctmÙttS˙ı
n.Øttt˜Ctt˜āt%ttvt ØtMvt Ftīt-1
⭲tctât[´št, ctât[´št, Fttt˜jt˜mstltctât`, ūtt`āt Fttt˜jt˜mstltctât`*t, ūtˆāt mtt˙t˜K*tctât` ⭲ttˆj ⭲ttt˜st‘ctâ Øttt˜Ct t˜āt%ttvt KtC[-⭲t : (⭲tctât[´št ⭲ttˆj ctât[´št)
1.t˜ctt˜Yt÷t FtītFǐtcttW ctīt mttcttvÙt mtct‘`#tCt, ctitt´ctījCt stt“j FtjmFtj mtcytvOt, x. Xxx`št`xxx`⭲tt: Ûtǐtvt, Ftt`utCt, ptvtvt stt“j cttvtct Ftjptt`ctt` utt`št`pt`tstt 3. Fttjt`Ft`âjt: vttǐt lt˙$t ct˙īctītǐt stt“j ptvtvt, ctitt´ctījCt mittvt, 4.vttF[`t˜j*tt: ytn¸vFtltt, utcttǐt, t˜Ytt˜òtÙtt˙, ct`štpt`vt`t˜mtmt, 5. n`ītt˜ctvstt`ūt: Ftjptt`ctt` stvt¸cttīǐtvt ltitt FtjFtt`utt`-Ftjptt`ctt` mtcytvOt, 6. uvt`vt`t˜īt[t: Ftt˘ǐtt`ctīt`št ct˙` stvt¸cttīǐtt` t˜ctt˜ctījCt, 7.⭲ttstt´Ftt`[t: ›xxxx`t˜MtÙtt ctW ǐttctt‘ utt®Ft stt“j Ftjptt`t˜ctltt, PttWitt ct`ī GFtt˙it, sttitt`‘Ftt`[t ctW Ât˜° stt“j Õtmtvt, ctīt`štW ct˙` mttcttt˜ptctī ptt`ctvt stt“j ctītÙtt˙vltjCt, 8.ctt`ītmctât: Mctmtvt t˜vtÙtt`FttFt˜ǐtvtt, ct¸òtīt t˜vtctt‘Ct, 9.FctâtFvtt`[ct´št: mttcttvÙt mt˙it9vt, ǐttctt‘ utt®Ft stt“j yt˙Ot¸ltt, 10.ctīt[ˇštW ctīt` GlFtt˜òt, Ft¸īFt:Ft¸īmt ctt`vt stt“j Ûtlt¸uFttotW ctīt` GlFtt˜òt, 11.u`cFtât`t˜yt*tt, t˜Ûtjt˜[cYtltt stt“j Mttctctīt`ptvtvt, Ft“lt˛ctī ǐt#tCt, 1n.j`Fšt`t˜īt*tt: ctījt`t˜š utt®Ft (Svttt˜Fmt[, [tFS`t˜Fmt[, Ft“jtt˜Fmt[ stt“x x˜mtvt`t˜Fmt[) [tFvtt`mtt˘j, 13.u`ātt`ūt: GlFtt˜òt Ftt˜#tÙttW ctW St˜jÙtǐt stvt¸cttīǐtvt stt“j Mctmtvt, GñÙtvt t˜ctnt`vt-Ft#tt`, 14.ctˆct`t˜īt*tt: utt`št`itt`t˜jÙtt stt“j ct`štt˜itt˜jÙtt, Ùttitt`t˜jÙtt ct`ī Ûtct‘ cÙt¸lFt÷tı
KtC[-yt : Fttt˜jt˜mitltctīt`Ùt, ptt`ct Fttt˜jt˜mitt˜ltctīt`Ùt, pt“ct mtt˙t˜KÙtctīt` stt“j sttt˜it‘ctī uttt˜Ct t˜ctzttvt, 1. Fttt˜jt˜mstltctât`*t : pt“ct ltitt stpt“ct ctītjctī, sttlt˙j stt“j stlt˙jpttltt`Ùt mtcyt˙Ot, Fttt˜jt˜mitt˜ltctīt` stvt¸›tīct, ptt`ctt`ct ct`ī t˜ctt˜Yt÷t utctītj, ptt`ct Ytt jmttÙtvt Ût›tī, Kttet pttǐt, stt`ptt`vt Ftlt‘ stt“j ptt`ct ct˙[ǐt, cttÙt¸ ptǐt stt“j itǐt ctīt utotutCtı x. xxx`āt Fttt˜jt˜mstt˜ltctât` : uttt˜Ct cÙtctntj ct`ī utctītj, cÙtctntj ctW Ftīt`jt`ctt`vttW stt“j ntctt`‘vttW ctīt` Yttt˜ctctīt uttt˜Ct cÙtctntj ct`ī stOÙtÙtvt ctīt` t˜ctt˜OtÙtt˙, pt“ctǐtÙtı 3. ūtˆāt mtt˙t˜K*tctât` : utt˜ltÛtÙtvt t˜ctt˜OtÙtt˙, yttj˙yttjltt-yt˙švt stt“j ct`īvõt`Ùt utct˛t˜òtct`ī cttFt, cttvtctī t˜ctÛtǐtvt stt“j cttvtctī $t¸t˜š, mtnmtcytvOt stt“j mtcttßtÙtCt, ctītF‘ mct:cttFtj stt“j št` -š`mšı 4. sttt˜it‘ctī uttt˜Ct t˜ctzttvt :FtīmtǐttW (Ottvt, Ûtvtt stt“j it÷tt) stt“j mt˙«tnt`lt stvttptt`˙ ct`ī ctīt`[ Ftt`[ctī, ctt“vt Fttǐtvt, j`Mtctctīt`š Fttǐtvt, ǐttKt ctīt`š Fttǐtvt, ctlmÙt Fttǐtvt stt“j mtt`Ft Fttǐtvtı
Øttt˜Ct t˜āt%ttvt-ØtMvtFtīt - n
ctât`t˜Mtctât ūtˆt˜ātctât`, ⭲ttvt¸āt˙t˜Mtctât`,t˜ātctâtmt ⭲ttˆj ātitt´ctâjCt/t˜āt%ttvt, ūtˆātjmtt*tvt, Mtjt`x x˜›tâ*tt t˜āt%ttvt ⭲ttˆj Ftt˜jātOt‘vt ūtˆt˜ātctât`
KtC[-⭲t : ctīt`t˜Mtctīt pt“t˜ctctīt`, sttvt¸ct˙t˜Mtctīt`, t˜ctctītmt stt“j ctitt´ctījCt t˜ctzttvt, 1. ctât`t˜Mtctât ūtˆt˜ātctât` : ctīt`t˜Mtctīt ctīǐtt-mtt˜›tīÙt itctvt stt“j mtt`t˜[Ùtct-Ftt`š“t˜MtÙtct Sšt`Ft`pt FtcFt, cttF‘št`ctīt˘t˜v[^Ùtt, ittǐptt`ctītÙt, stvltõ‘cÙtt`,pttt˜ǐtctīt, jtFytt`mtt`ct sttj“ ǐttFmtt`mtt`ct, ctīt`t˜Mtctīt t˜ctYttptvt- mtctmtt$tt` ltct‘ī stt“j it¸Ctmtt$t itt˜lt stt“j stOt‘mtt$tCt, it¸Ctmtt$t cttvtt˜Ût$tı ptt`vt OttjCtt stt“j ctītÙt‘ -[t`SvtS ctīt ct`š˛mtvt-t˜›tīctī ctt˘[ǐt, sttvt¸ct˙t˜Mtctī cttīš,utt`št`vt mt˙Mǐt`utCt, t˜ǐt˙it it¸Ctmtt$t stt“x x˜ǐt˙it t˜vtOtt‘jCtı n.⭲ttvt¸āt˙t˜Mtctât` : ct˙Mttitt˜lt ctīt`` ctW`[ǐt ct`ī t˜vtÙtct, Ft¸vt‘Ùtt`it mtnǐtivtltt stt“j mtnǐtivtltt t˜Ût$t, ytn¸ Sǐtt`ǐt, GlFtt˜jctlt‘vt (uttct˛īt˜ltctī stt“j ut`t˜jlt) GlFtt˜jctlt‘vt stt“x x˜ctctītmt, it¸Ctmtt$t ctīt` mt˙KÙtt stt“j utt®Ft mt˙jÛtvttlctctī Ft¸vtt˜ct‘vÙttmt, ytn¸it¸t˜Ctltt, utt`ct“īt˜jÙtt`štW stt“j Ùt¸ctīt`t˜jÙtt`štW ctW ptt`vt stt˜YtcÙtt˜òtī ctīt t˜vtÙtctvt, cttvtct it¸Ctmtt$tt` stFtmttcttvtlttS˙, ptt`vt stt“j jt`it, mt¸ptvtvt t˜ctzttvt, sttvt¸ct˙t˜Mtctī stt˜YtÙtt˙t˜$tctīt`, Ft¸vtÙttˇitpt [t`SvtS ltctīvtt`ctīt` stt`j ptt`vt ct:ǐtt`t˜vt˙itı 3.t˜ātctâtmt ⭲ttˆj ātitt´ctâjCt t˜āt%ttvt : t˜ctctītmt ct`ī t˜mtætvlt pt“ct t˜ctt˜Yt÷tltt ctīt œtt`lt stt“j Gmtctīt` uttct˛īt˜ltctī ctjCt, nt[t´ -cttFvtytit‘ t˜vtÙtct: itt`Ftctī stt“j YtÙtmttÛtctī j˙ptvt, stvt¸njCt, uttit‘ct:Ùt t˜›tīÙtt t˜ctt˜OtÙtt˙, stt“j Gvtctīt` Yttt˜ctctīt -Ét`Ftt`Ùt uttt˜Ctpttlt, mFtt`Mtt`pt stt“j GFtmFtt`Mtt`pt ctīt` OttjCtt ,ctitt´ctījCt ct`ī t˜mtætvltı uttt˜Ctvttct Ftæt˜lt, uttt˜Ct-Ytt“itt`t˜ǐtctī Ftt˜jct˙[ǐt stt“j stvltjt‘°^t`Ùt mt˙t˜nltt, ptt`cttMct, Ytt ct“zttt˜vtctī ctntctīǐFt, Itt`.[` stt“j ntitt` ctīt` pttt˜ltct˛òt, cttvtct ctīt` GlFtt˜òt stt“j Gmtctīt t˜ctctītmt, ptvlt¸sttW ct`ī ctntÉt`Ftt`Ùt t˜ctltjCt ct`ī t˜mtætvlt stt“j ctto, t˜ctÕt ct`ī uttt˜Ct-Ytt“itt`t˜ǐtctī Ftt˜jct˙[ǐtı
KtC[-yt : ūtˆāt jmtt*tvt, Mtjt`x x˜›tâ*tt t˜āt%ttvt ⭲ttˆj Ftt˜jātOt‘vt ūtˆt˜ātctât`, 1.ūtˆāt jmtt*tvt : ctītytt`ˇntF[`^št`, t˜ǐtt˜Ft[tW (mt˙lt˛Flt stt“j stmt˙lt˛Flt ctmtt stcǐttW ctīt` ǐt`ctīj) stctt`vttW stcǐttW, utt`št`vttW stt“j vÙttct:ǐtt`ctī stcǐttW ctīt` mt˙jÛtvtt, iǐttFctīt˘t˜ǐtt˜mtmt, ›t`īyt ctīt Ût›tī, GFtÛtÙtvt stt“j stFtÛtÙtvt, sttct:mtt`ctījCttR FtītmFtīt`jt`ǐt`Mtvt vptt‘- mt˙j#tCt stt“j Gmtctīt ctt`Ûtvt, S št` Ftt` stt“j mtt` S Sct Ftt` SvpttFctt`˙ ct`ī utctītj, SvpttFct t˜›tīÙtt ctīt` t˜›tīÙttt˜ctt˜Ot, utt˜ltj#ttiǐtt`yÙt¸t˜ǐtvt stt“j utt˜ltj#tt t˜ctštt˜ctvtı n. Mtjt`x x˜›tâ*tt t˜āt%ttvt : mltt˜vtÙttW ct`ī t˜ctMt`ut mt˙oYt‘ ctW: vt˜Otj ctīt` jÛtvtt, cttvtct ctW ®t˜Otj ctit‘, mctīvovt, sttct:mtt`ptvt stt“j ctītyt‘vt [tF‘ sttct:mttF[ ctīt Ftt˜jctnvt, nt`ctt`iǐtt`t˜ytvt, Õtmtvt stt“j Gmtctīt t˜vtÙtctvt, Ùttt˜jÙtt ctīt t˜vtctt‘Ct, stt“j ctt$t, stcǐt-#ttjctī mttcÙt stt“j mtctmittFtvt, cttvtct ctW lttFt-t˜vtÙtctvt, lt˙t˜$tctīt sttct`it -Sct:mtt˘vt ct˙` Ûttǐtvt stt“x x˜mtvt`Fmt ctW Fttjitctvt, lt˙t˜$tctīt ut`utt`, Ât˜° ßtctCt stt“j It,tCtFt`t˜MtÙttW ct`ī utctītj, utt`št`vt, ctītyttˇntF[^`š, ctmtt stt“j vÙttct:ǐtt`ctī stcǐt ctīt FttÛtvt stt“j stctMtt`utCt, FttÛtctījmttW ct`ī œttct ctītt˜vtÙt˙$tCt, cttvtct ctīt mt˙ltt¸ ˜ǐtlt sttntjı mš`jt˘Ùt[, utt`št`vt, Ft`FštF[ stt“j stctt`vttW stcǐt mt` cÙtÙt¸lFtvlt ntctt‘`vt, ntF‘Ftt“itǐt`ctmt, t˜FtóÙt¸šjt`, itt˘Ùtjt˘Ùt[, Ft“jtittÙtjt˘Ùt[ Ft“vtt˜›tīÙttpt (stivttMtÙt), S[jt`vtǐt (stt˜Otct:ctī) itt`vt[ (pt`vto) stt“x x˜Ftt˜vtÙtǐt st˙ctī ctīt` Yttt˜ctctīt stt“j Gvtct`ī mtcytvOt, cttvtct ptvtvt ctīt Mtjt`x x˜›tīÙtt t˜ctzttvt, cttvtct ctW Ftt˜jctOt‘vt ctīt ntcttˇ`vtt` t˜vtÙt˙$tCt mltt˜vtÙttW ctW˙ Ftīt`jt`ctt`vtı 3. Ftt˜jātOt‘vt ūtˆt˜ātctât` : yt,`t˜ctīÙtt`mšt`ctt, ct`{ctī stt“j ct¸īct:ct¸īš ctW Ùt¸ictctīptvtvt, t˜vtut`Ûtvt: st˙[ ct`ī utctītj t˜oǐtvt stt“j it“mš¸ǐttYtctvt, ct`{ctī stt“j ct¸īct:ct¸īš ct`ī it“mš¸ǐtt ct`ī Ft`īš ct“Ft (Ytt˜ctuÙt cttvtt˜Ût$t) ct`{ctī ctW ctītÙtt˙ltjCt, ct¸īct:ct¸īš ctW Yt,tCtyttnÙt ctīǐtt ctīt t˜vtctt‘Ct stt“j Ytt˜ctuÙt, mltt˜vtÙttW ctW Gǐyt, stFtjtFtt`t˜utctīt stt“j stFtjt ct`ī utctītj, mt˙it9ctī Ftt˜jItšvtt, Ft¸vt®oYtctvt, Ftt˜jctOt‘vt ctīt stvt¸ctt˙t˜Mtctī t˜vtÙt˙$tCt,ctt˜ultuctī , stt˙Kt stt“j ùoÙt ctīt st˙it t˜ctctītmt, ctītǐtutYttctvtı ctīt`š ctītÙtt˙ltjCt ctīt ntctt`‘vtt` t˜vtÙt˙$tCtı
3. jmtt*tvt t˜āt%ttvt : Øtstct ØtMvt Ftīt
FtjcttCt¸ mt˙jÛtvtt : ytt`j ctīt utt˜lt®Ft ltitt Gmtctīt` mtt`cttS˙, o-yt,tiǐtt` mtctt`ctījCt, nt`Fpt`vtytit‘ ctīt stt˜vt§tltt ctīt t˜mtætvlt, ct:cttCšct Ùtt˙t˜$tctīt`Ùt stt˘Ftj`xx ltitt ßtt˘t˜[ptj ltj˙it mtctt`ctījCt, ltj˙it Ftīǐtvt ctīt Ytt“t˜ltctī ctnlct ltitt Fmtctīt` t˜ctMt`utlttS˙ (mttcttvÙtt`ct˛īlt ǐtt˘t˜cytctī) stjt`Ùt t˜ctltjCt ltitt s, p, d Sct˙ f ctī#tctītW ctīt` sttct˛īt˜ltÙtt˙ Sctī t˜ctctt`Ùt yttct:mt ctW ctīCt, Fǐt`ct:š^tt˜vtctī Gīptt‘sttW ctīt ct:cttCšt`ctījCt (ntF[^t`ptvt FtjcttCt¸ ctīt it¸Cttlctctī stOÙtÙtvt FttGǐtt` ctīt stFtctpt‘vt t˜mtætvlt, stt˜Otctīltct Ût›tīCt ctīt` ytn¸ǐtltt sttFtīyttv t˜mtætvlt FtjcttCt¸sttW ctīt Fǐt`ct:š^tt˜vtctī t˜ctvÙttmt, Ftjtǐttj`t˜MtÙtct ltlcttW ctīt` mtt˜cctt˜ǐtlt ctījlt` n¸S sttctlt‘ lttt˜ǐtctīt ctīt` ot`It‘ utCttǐtt`ı ltlcttW ct`ī it¸CttW ctW sttctlt‘ltt ltitt FtjcttCt¸ctī Sct ˙sttÙtt˜vtctī t˜$tpÙttS˙, sttÙtvtvt t˜ctYtct, Fǐt`ct:š^tvt yt˙Ot¸ltt ltitt ptǐtÙtt`ptvt vptt‘ı
vttt˜Ytctīt`Ùt Sct˙ t˜ctt˜ctījCt jmttÙtvt: vttt˜Ytctī ctīt` mt˙jÛtvtt (ctīt`Mt ctt˘[ǐt), vttt˜Ytctīt`Ùt ytǐt, vttt˜Ytctīt`Ùt mittt˜Ùtlct n/p stvt¸Fttlt, vttt˜Ytctīt`Ùt yt˙Otvt vptt‘ıj`t˜[Ùtt`St˜ct:šctltt ctīt` ytǐt itt˜ltctīt`, Gmtctīt` FtnÛttvt ltitt cttFtvt ltlcttW ctīt ctī˛ t˜$tct ltlcttvltjCt ltitt vttt˜Ytctīt`Ùt stt˜Ytt˜›tīÙttÙtW , vttt˜Ytctī t˜ctKtC[vt ltitt mt˙itǐtvt, j`t˜[ÙttW St˜ct:šct mtctmittt˜vtctī ltittGvtctīt` GFtÙtt`t˜itltt, j`t˜[Ùtt` ctītyt‘vt ctītǐt t˜vtOtt‘jCt, t˜ctt˜ctījCt jmttÙtvt ctīt` uttjt˜cYtctī pttvtctītjt`, ptǐt ltitt ptǐtt`Ùt t˜ctǐtÙtvttW ctīt j`t˜[Ùtt` stFtItšvt, t˜ctt˜ctījCt jtmttÙtt˜vtctī GlFtto ctīt` FctītF‘ (ptt`-cttvt) t˜utīctī ctt$ttt˜ctt˜ltı
jtmttÙtt˜vtctī sttyt˙Otvt mt˙Ùtt`ptctīltt sttytvOt t˜mtætvlt(ntFšǐtj ǐt˙ovt ltitt FttGt˜ǐt˙it-mǐt`xx ct`ī t˜mtætvlt), mt˙ctījCt, ctt`.Smt.F‘ Ftt` sttj t˜mtætvlt ltitt mttOttjCt stctītyt‘t˜vtctī stCt¸sttW ctīt` sttct˛īt˜ltÙtt˙ı sttt˜Cctctī ctī#tctī t˜mtætvlt sttyt˙Otvt, stvttytvOtvt ltitt utt˜ltsttyt˙Otvt sttt˜Cctctī ctī#tctī, mtctt˙it ltitt t˜ctutctt˙it t˜æFtjcttCt¸ctī stCt¸ctītW ctīt` sttt˜Cctctī ctī#tctī vptt‘ mltj sttj`Kt, sttyt˙Ot ›tīct, sttyt˙Ot o“OÙt‘, Sct˙ sttyt˙Ot mttctiÙt‘, t˜mtictt ltitt FttF‘ sttyt˙Ot, ntF[^t`ptvt sttyt˙Ot mtnmt˙Ùtt`ptt` sttyt˙Ot ctīt` t˜ctMt`utlttS˙ı s ltitt p KtC[ ct`ī ltlcttW ctīt jmttÙtvt : s ltitt p KtC[ ct`ī ltlcttW ctīt mttcttvÙt it¸Ct ltlcttW ctīt jtmttÙtt˜vtctī mtt˜›tīÙtltt ltitt mtcttn utct˛t˜òtÙtt˙, Gvtct`ī ntF[^tF[tW, n“ǐtF[t` ltitt sttct:mttF[t` ctīt jtmttÙtt˜vtctī sttÛtjCtı
mt˙›tīctCt ltlcttW ctīt jmttÙtvt : mttcttvÙt t˜ctMt`utlttS˙, Ftt˜jctltt´ sttct:mtt`ctījCt stctmittS,˙ ptt˜šǐttW ctīt t˜vtctt‘Ct, Gvtctīt j˙it ltitt Ût¸cytctīt`Ùt Sct˙ Glut`t˜jctīt`Ùt it¸Ctı sttÙtt˜vtctī t˜$tpÙttsttW, sttct:mtt`ctījCt stctmittsttW ltitt Ût¸cytctīt`Ùt it¸CttW ctīt` Ât˜° mt` 4d stt“j 5d mt˙›tīctCt ltlcttW Sct˙ Gvtct`ī stvt¸vFt 3d ltlcttW ctīt lt¸ǐtvttlctctī stOÙtÙtvtı
ǐt“it`vttF[tW ltitt St˜ct:šǐttF[tW ctīt jmttÙtvt : ǐt“it`vttF[tW, mt˙ct¸īÛtvt, sttct:mtt`ctījCt stctmittS˙, ǐt“it`vttF[tW ltitt St˜ct:šǐttF[tW ct`ī Ft˛itct:ctījCt ctīt t˜mtætvlt, Gvtct`ī Ùtt“t˜itctītW ctīt Ût¸cytctīt`Ùt ltitt mFt`ct:š^ctt` it¸Ctı GFt mtnmt˙*tt`ūtvt jmtt*tvt : GFt mtnmt˙Ùtt`ptvt Ùtt“t˜itctītW ctīt ctvt‘x x˜mtætvlt vttct Ftæt˜lt ctīt` sttF‘.Ùtt.Ftt`S.mtt`. (IUPAC) utCttǐtt` utYttctt` FtjcttCt¸ ›tīctt˙ctī, GFt mtn mt˙Ùtt`ptvt Ùtt“t˜itctītW ctW mtcttctÙtctltt, mt˙Ùtt`ptctīltt yt˙Ot t˜mtætvlt ltitt Gmtctīt` mtt`cttS˙, t˜›tīmšǐt #t`$t t˜mtætvlt st°Ftīǐtctīt`Ùt, Ûtlt¸uFtīǐtctīt`Ùt ltitt ctit‘ ltǐtt`Ùt ptt˜šǐttW ctW d ctī#tctītW ctīt t˜›tīmšǐt #t`$t t˜ctFttšvtı dq ltitt Fmtct`ī cttvt ctīt` utYttt˜ctlt ctījvt` cttǐt` стâтсстâ d 1 mt` d 9 ltctī ct`ī t˜ǐtS t˜›tīmšǐt #t`$t mittt˜Ùtlct vptt‘sttW ctīt` itCtvtt, o¸yt‘ǐt ltitt utytǐt #t`$t ct`ī st°Ftīǐtctīt`Ùt ptt˜šǐt, mFt`ct:š^t` jtmttÙtt˜vtctī ßt`Ctt`ı 3d mt˙›tīctCt Ottlt¸ ptt˜šǐttW ct`ī Fǐt`ct:š^tt˜vtctī mFt`ct:š^ct, Fǐt`ct:š^tt˜vtctī Gòt`ptvt ct`ī utctītj d1 mt` d10 t˜vtctītÙttW ct`ī t˜ǐtS mFt`ct:š^t˜ctctīt` sttet stctmittS˙ı ūtˆāt
⭲tctâtyt‘t˜vtctâ jmtt*tvt : pt“t˜ctctī ut›tīcttW ctW stt˜vtcttÙt‘ ltitt mtt#ct cttt˜$tctī ltlct, Ottt˜lctctī Fttt˜Ft‘īt˜jvtnt`ctt`iǐtt`t˜ytvt ltitt cttÙttiǐtt`t˜ytvtı ca2+ ct`ī t˜ctMt`ut mt˙oYt‘ ctW #ttjt`Ùt ltitt ct˛ot#ttjt`Ùt Ottlt¸ sttÙtvttW ctīt pt“t˜ctctī ctnlctı
t˜vtcvtt˙t˜ctīlt sttctīyt‘t˜vtctī Ùtt“t˜itctītW ctīt ytvttvtt, Gvtct`ī it¸Ct Otct‘ ltitt GFtÙtt`it: Yttjt` ptǐt, ytt`t˜jctī St˜mt[, [tFytt`j`vt, ntF‘[^tt˜ptvt,Sctt`vt, Ftt`š“t˜MtÙtct [tF›tīt`ct`š,
Ftt`š“t˜MtÙtct Ftjct“itvt`š, Ce (IV)mtǐFt`īš ltitt Ti (III) mtǐFt`īšı
ytn¸ītctâ : mt˙KÙtt cttOÙt ltitt Yttj cttOÙt stCt¸Yttjı stctmttovt, utctītMt t˜ctctīt`Ct‘vt, MÙttvtltt ltitt FtjmttjCt otyt, t˜ctt˜OtÙtt˙ Étjt ytn¸ǐtctītW ct`ī stCt¸Yttj ctīt zttlt ctījvttı ytn¸ǐtctītW ctīt` utlÙttmitltt ltitt t˜›tīmšǐtlttı ytt`jtptvt, t˜mtǐtt`ctīt`vt ltitt FtītmFtīt`vttFt˜š^t˜ǐtctī n“ǐttF[ ytn¸ǐtctīı jtmttÙtt˜vtctī vuctt itt˜ltctīt` : vuctt ittt˜ltctīt` Ftīǐtvt, vuctt itt˜ltctīt` ct`ī t˜vtÙtct ltitt t˜ctt˜Yt÷t Ytt“t˜ltctīt` jtmttÙtt˜vtctī ut›tīcttW ct˙` Gmtct`ī stvt¸utÙtt`itı jtmttÙtt˜vtctī t˜ctYtct ctīt` OttjCtt, t˜itypt-[Ÿttn`ct mtctt`ctījCt ct:ǐttt˜mtÙtmt -ct:ǐt`Ft`jtvt mtctt`ctījCt mtnpttlt it¸Ct Otctt‘W ctīt vucttitt˜ltctīt` t˜ctct`Ûtvtı jtmttÙtt˜vtctī ytǐt itt˜ltctīt` : stt˜Ytt˜›tīÙtt ctīt` stCt¸ctīltt ltitt ctīt`t˜š stt˜Ytt˜›tīÙtt ctīt`t˜š zttlt ctījvt` ctīt` t˜ctt˜OtÙtt˙, mtt˜›tīÙtCt vptt‘, stt˜Ytt˜›tīÙtt ojtW ctīt mt˙it9vt, t˜mtætvlt, t˜mitj stctmitt mtt˜÷tctīšvt, stt˜Ytt˜›tīÙtt ojt`˙ ctīt mt˙›tīctCt stctmitt t˜mtætvlt, utitct ctīt`t˜š ctīt` ›tīcttitlt Gl›tīctCtt`Ùt ltitt FttM‘ct stt˜Ytt˜›tīÙttS˙ı uttctmitt mttcÙt: uttctmitt Itšctī ltitt mctlt˙$tltt ctīt` ctīt`t˜š, Sctī ltitt ot` Itšctī t˜vtctītÙt ctīt uttctmitt sttj`Kt, vtvmt‘š ctīt t˜ctltjCt t˜vtÙtct ct`ī stvt¸utÙtt`itı t˜ctet¸lt jmttÙtvt: t˜ctet¸lt Ûttǐtvt ct`ī t˜vtÙtct stt˜Ytitctvtt˙ctī, stt˜Ytitctvtt˙ctī zttlt ctījvtt (t˜nštFt‘ī ltitt itt˜ltMtt`ǐt mtt`ctt˙ctī t˜ctt˜Ot, ) t˜ctǐt`Ùtltt ltitt t˜ctǐt`Ùtltt it¸CtvtFtīǐt zttlt ctījvt` ctīt` Ûttǐtctīltt t˜ctt˜Ot, sttÙtvtt` mttcÙt, utytǐt t˜ctet¸lt stFtItšŸttW ctīt t˜mtætvlt mtt˜›tīÙtltt it¸Ctt˙ctī ctīt [`yttF‘ -nctīǐt t˜mtætvlt ptǐt ctīt sttÙtvtt` it¸CtvtFtīǐt PH stcǐt#ttj mttÛtctī, GYtÙt sttÙtvt utYttct, ctFtīj t˜ctǐtÙtvt, t˜ctǐt`Ùtltt it¸CtvtFtīǐt stt“x x˜ctMǐt`utCt ctW Fmtctīt stvt¸utÙtt`itı
9t`mt ⭲tātmstt ctât jmtt*tvt : 9t`mttW ctīt ctitt´ctījCt, t˜›tīmšǐt lt˙$t t˜›tīmšǐttW ctWmtt˜ctt˜lt ct`ī ltlct, t˜$tt˜ctct pttǐtctī ltitt Sctīctī mt`ǐt, yt˙Ot utctītj ct`ī sttOttj Ftj t˜›tīmšǐttW ctīt ctitt´ctījCt sttÙtvtt` 9t`mt, Ottt˜lctctī 9t`mt, mtn mt˙Ùtt`ptt` 9t`mt ltitt stCt¸ctī 9t`mt, itt`ǐtctītW ctīt mt¸mt˙ct¸īǐtvt, utšctīt`Ctt`Ùt mt¸mt˙ct¸īǐtvt, Itvt mt¸mt˙ctīǐtvt, GFtmtnmt˙Ùtt`ptvt ›tīctt˙ctī ltitt t˜$tpÙtt stvt¸Fttlt utYttctı Sct:mt-t˜ctījCt t˜ctctlt‘vt ct`ī t˜ǐtS yt“,it ctīt t˜vtÙtct, Fttct[x x˜ctt˜Ot Nacl ltitt Kcl ctīt` t˜›tīmšǐt mt˙jÛtvttS˙ı Ft˛‰ jmtt*tvt : ctīt`ǐttF[tW ctīt mittt˜Ùtlct ltitt Gvt Ftj sttct`Mt ctīt Go˛itct, t˜ctet¸lt itt˜ltctīt` t˜ctYtct, Ytt“t˜ltctī ltitt jtmttÙtt˜vtctī stt˜OtMtt`utCt t˜ctt˜Yt÷t utctītj ct`ī stt˜OtMtt`utCt mtctlttFtt` mtctt˙itt` ltitt t˜ctutctt˙itt` Glut`jCt, SvpttFct Glut`jCt (cttFct`īt˜ǐtmtctWšvt mtctt`ctījCt) ⭲tCt¸ mFt`ctäš^t˜ctctât` : IttCt‘vt mFt`ct:š^ct : Â{ ltitt stÂ.{ IttCt‘ctī ctt˘[ǐt, t˜ÉFtj-cttC[ctī stCt¸sttW ctW yt˙Ot otjt` ctīt t˜vtOtt‘jCt, mtctmittt˜vtctī utt˜ltmittFtvtı ctâcFtvt ‹t˛Ct‘vt mFt`ctäš^ct : mt˙vttt˜o ltitt stmt˙vttt˜o ctīcFtvt, t˜ÉFtjcttCt¸ctī stCt¸sttW ctīt` ctīcFtvt vptt‘ÙtW, MttvÙt t˜ytvo¸ vptt‘, ytǐt t˜mitjt˙ctī ctīt cttǐÙtt˙ctīvtı sttOttjYttlt sttct˛t˜òt stt˜Otmctjctī vuctt ytQ[, ytn¸ FtjcttCt¸ctī stCt¸sttW ctW mctlt˙$tltt ctīt` ctīt`t˜š, mtcttn sttct˛t˜òtÙttW ctīt` OttjCttı jtctvt mFt`ctäš^ct : jtctvt utYttct, mšt`ctī ltitt utt˜ltmšt`ctī, j`KttÙtW ltitt ltt`›tltt stvltj FttjmFtt˜jctī stFtctptv‘ t ctīt t˜vtÙtctı Fīt`ctäš^tvtt` mFt`ctäš^ct : Fǐt`ct:š^tvtt` Gòt`ptvt, FtQīctī-ctīt˘C[tvt t˜mtætvlt, utt˜ltot`t˜Flt ltitt mFt¸īj ot`t˜Fltı
jmtt*tvt t˜āt%ttvt - t˜Éltt`*t ØtMvt Ftīt
vttt˜Yt
mttcttv*t ctâtyt‘t˜vtctâ jmtt*tvt : Fǐt`ct:š^tt˜vtctī t˜ctmittFtvt-ut`jt˜Ctctī Fǐt“ct:š^t`ctjt` ltitt ct`mtt`ctjt` utYttctı mt˙Ùt¸ictvt Sct˙ stt˜lt mt˙Ùt¸ictvt stvt¸vtto ltitt ctītyt‘t˜vtctī Ùtt“t˜itctītW ct`ī t˜ǐtÙt` Fmtctīt stvt¸utÙtt`it, Fǐt`ct:š^tvt mvt`nt`, vttt˜Ytctī mvt`nt`, ctītyttˇct`īštÙtvt, ctītyt‘St˜vtÙtvt ltitt ct¸òtī cttǐtctīı ctītyt‘t˜vtctī stcǐt ltitt #ttjı ctītyt‘t˜vtctī stcǐttW ltitt #ttjtW ct`ī mttctiÙt‘ Ftj mt˙jÛtvtt ctīt utYttctı ntF‘[^t`ptvt yt˙Ot ltitt ctītyt‘t˜vtctī Ùttt“ ˜itctītW ct`ī it¸CttW Ftj Fmtctīt utYttctı ctītyt‘t˜vtctī stt˜Ytt˜›tīÙttsttW ctīt` t˜›tīÙttt˜ctt˜Ot ctīt` OttjCttt Ùtt`ittlctctī utt˜ltmittFtvt, t˜ctǐtt`Ftvt, stt˜Ytt˜›tīÙttsttW, ltitt sttCtt˜ctctī Ft¸vt‘tc˜ tvÙttmt ctīt` t˜›tīÙtt t˜ctt˜Otı Fǐt`ct:š^tvt mvt`nt` ltitt ctī mvt`nt` Sjt`ct“t˜šctī utt˜ltmittFtvtt ctīt` t˜›tīÙtt t˜ctt˜Otı t˜vtcvtt˜ǐtt˜Ktlt stt˜Ytt˜›tīÙttsttW ctīt` t˜›tīÙttt˜ctt˜Ot : Sǐ[t`ǐt mt˙Itvtvt, ct:ǐt`ptvt mt˙Itvtvt, yt`ctīct“vt Ft¸vt‘t˜ctvÙttmt, Fttt˜ct‘īvt stt˜Ytt˜›tīÙtt, jtFctj št`ctvt stt˜Ytt˜›tīÙtt, ct“īt˜vtpttjtW stt˜Ytt˜›tīÙtt, utīt`[`ǐt-›tītFt:šmt stt˜Ytt˜›tīÙtt, t˜jFtītctˇt˜šmctīt` ctīt` stt˜Ytt˜›tīÙtt ltitt cttitvtj ctt`jcttFvt stt˜Ytt˜›tīÙttı ut˜ītFtˆât˜šctâ *ttˆt˜itctâ : t˜vtcvtt˜ǐtt˜Ktlt ctit‘ ct`ī mttOttjCt ctītyt‘t˜vtctī Ùtt“t˜itctītW ctīt jtmttÙtvt t˜ptmtctW t˜ctMtu` tctīj Gvt stt˜Ytt˜›tīÙttsttW ctīt` t˜›tīÙttt˜ctt˜Ot ct`ī mtvoYt‘ ctW Gǐǐt`Kt nt` ptt` Fvt Ùtt“t˜itctītW ст`â сттiт 7т` с7т` 7т`, uǐст`âvт, uǐстâт`vт, uǐстâт7vт, uт˜ǐстâǐт, 7“ǐтт7[, uǐстâт`7ǐт, 7'iтс, iтт×тт`ǐт, uт˜ǐ[7т7[, стâт`rт`vт stmt˙lt˛Flt ctītyttˇt˜vtctī Ùtt“t˜itctī, St˜mt[ ltitt Gvtct`ī cÙt¸lFtvvt , Sctt`vt, Sctt`vtt`St˜mt[, ntF[^tct:mtt˜St˜mt[, stmt˙lt˛Flt St˜mt[ ltitt t˜É#ttt˜jctī St˜mt[ı ct“ǐttt˜vtctī Smšj, St˜mtšt`St˜mtt˜šctī Smšj, itt`vÙttj stt˜Ytctīct‘ctī, ctītytt´vt [tFSptt`ctt`it`vt ltitt FtītmFtīt`j`vt ctīt` mt˙Mǐt`utCt GFtÙtt`t˜itlttSıı ctâtytt´ntF[^`š : ctitt´ctījCt, mttOttjCt , ctt`vt`mt“ct`ījtF[ ct`ī t˜ctvÙttmt ltitt Gvtctīt` mttcttvÙt stt˜Ytt˜›tīÙttÙtW, stt`mttptt`vt, ctīt ytvtvtt, Ftt˜jctltt´ Ot,tctCt IttCt‘vt FttFjtvtt`mt ltitt Ft:ÙttÙtjtvtt`mt ctīt` mt˙jÛtvttÙtWı Sǐ[t`mt ltitt ctīt`št`mt ctW ßt˙˛Ktǐtt ot`Itt´ctījCt ltitt ët˛˙Ktǐtt ǐtIt¸ctījCt iǐttctīt`mt ltitt utīct:št`mt ctīt stvltjFtt˜jctlt‘vtı t˜ītt˜ātct jmtt*tvt ltstt mt˙™FtCt : mtctt˜ctt˜lt ct`ī ltlct, mttOttjCt ctītyt‘t˜vtctī Ùtt“t˜itctītW ctW utctītMtt`Ùt ltitt pÙttt˜ltctt`ÙtmtcttÙtctlttı mtcFttCt‘ t˜ctvÙttmt (R ltitt S) pÙttt˜ctltt`Ùt mtcttctÙtÙttW ct`ī t˜ctvÙttmt E ltitt Z mt˙ct`īltvt Sctīǐt ltitt t˜Éutt˜ltmittt˜Ftlt mttFct:ǐtt`n`ct:mt`vttW ct`ī mt˙vFtCt vtt“ctītmFt ltitt ct¸īmtt´ mFtı ujt`ctˆt˜šctâ *ttˆt˜itctâ : yt`vptt`vt ctīt` sttOt¸t˜vtctī mt˙jÛtvtt Sjt`ct“t˜št˜mtšt` ctīt` OttjCtt nctīǐt t˜vtÙtct ltitt Fmtctīt styt`ptt`vtt`Ùt Sjt`ct“t˜šctī Ùtt“t˜itctītW ct`ī t˜ǐtÙt` mttOttjCt stvt¸utÙtt`itı utt˜ltmittt˜Ftlt mtcttntW ctīt mtt˜›tīÙtCt ltitt t˜vtu›tīÙtCt utYttctı o“t˜Mtctī utYttctı St˜ǐctīǐt ltitt ytWptt`vt ctǐtÙt mt` pt¸.[` t˜vtcvtt˜ǐtt˜Ktlt mtcttntW cttǐt` Ùtt“t˜itctītW ctīt stOÙtÙtvtı n“ǐtt`pt`vt, ntF‘[^tct:mtt`, vttFštW ltitt Sctt`vttW mtcttnı mtǐFtītt˜vtctī St˜mt[, ytWptptt˜[ntF[, mt“ǐt`t˜mtǐtt˜[ntF[, St˜mtšt`Ftīt`vtt`vt, ytWptt`Fctī, mtt“t˜ǐtt˜mtǐtctī, it`t˜ǐtctī, t˜mtvt“t˜ctctī ltitt ct“C[`t˜mtctī St˜mt[ı vtˆFtstītt`vt ltstt t˜Ftjt`[t`vt : mt˙Mǐt`utCt, mt˙jÛtvtt ltitt ctnlctFttCt‘ stt˜Ytt˜›tīÙttÙtW Sǐctīǐtt˘Ùt[tW ct`ī mt˙jÛtvtt t˜vtOtt‘jCt ctīt` mttcttvÙt t˜ctt˜OtÙtt˙ı t˜vtctīt`št`vt ctīt jmttÙtvtı ctâtyt‘t˜vtctâ ytn¸ītctâ : ytn¸ǐtt`ctīCt ctīt` t˜›tīÙttt˜ctt˜Ot, stt“ett`t˜itctī ctnlct ct`ī ytn¸ǐtctī mt˙Mtǐt`t˜utlt j`Mt`ı ūtt`āt mt`īttW ctât jmtt*tvt : mt˙t˜#tFlt Ftt˜jÛtÙt, jmttÙtt˜vtctī mt˙Itšctī, mt`ǐt t˜Ptǐǐtt` stcǐt #ttj mt˙lt¸ǐtvt, t˜ctmtjCt ltitt mtt˜›tīÙt stt˜Ytitctvt, [t˘vtvt t˜Ptǐǐtt` mttcÙtı uvūttFct ltstt mtn uvūttFct : vttct Ftæt˜lt ltitt t˜ctMt`utlttÙtW SvpttFct mtt˜›tīÙtltt utYttt˜ctlt ctījvt` cttǐt` ctītjctīı Svt Sct sttj mFt`ctīš^ctt`ctīt` Ftt` Sct sttj ctīt t˜mtætvlt, jtmttÙtt˜vtctī t˜mitlÙtvltjCt , Ût›tīCt-Ût›tīCt Ùt¸ictvt, mttOttjCt ctītyt‘t˜vtctī stCt¸sttW ct`ī tǐ˜ tÙt` Ftt`Sct sttj mFt`ct:š^cttW ctīt` cÙttKÙttı ātˆMīt`t˜<tctâ
⭲tt˙ctâ.[tW ctât ct˛ī*tt˙ctâvt : $ttt˜xXxx˙, Ùtittit‘ltt ltitt Ftt˜jMt¸æltt, sttFt`t˜#tctī ltitt cttvtctī t˜ctÛtǐtvt, mt˙o`nFttCt‘ tv˜ tjt`#tCttW ctīt t˜vtjtctījCt, št` Ftjt`#tt, ct:Ùtt Ftjt`#ttı
t˜ātītt*tctâ t˜vt<ctâ<t‘Ct : t˜ctltjCt t˜vtÙtct, t˜ctFtjt`lt Ottjt t˜ctltjCt ctīt` ›t“īit Ftt˜jctīǐFtvtt, ctnlctFttCt‘ t˜ctǐttÙtctī t˜vtuctīutCt‘ t˜vtctītÙtı ātCt‘īt`Ktt` t˜āt%ttvt : ctCt‘ǐt`Ktt`
Continued....
t˜ctzttvtı ctCt‘ǐt`Ktt` utt˜ctt˜OtÙttW ctīt ctitt´`ctījCt, stt˜OtMtt`utCt ct`ī mttcttvÙt t˜mtæt˙lt, t˜ctYttptvt sttÙtvt t˜ctt˜vtÙtct, ctītitpt ctit‘ ǐt`Ktvt ltitt t˜ctjǐtFtjlt ctit‘ ǐt`Ktvtı Ft*tt‘ātjCtt`*t jmtt*tvt t˜āt%ttvt : cttÙt¸ utotutctī Sct˙ Gvtct`ī t˜ctuttòtī utYttct, stt`ptt`vt Ftjlt ctīt t˜ctItšvt, vttFš^t`ptvt ctī` sttct:mttF[ ctīt utYttct, Ft:ǐtt`jt`-ct:ǐtt`jt`-ctītyt‘vt ltitt stt`ptt`vt Ftjlt Ftj Gmtctīt utYttct, FttoFt it˛n utYttct stcǐt ctutt‘ı
4. Yttˆt˜ltctâ t˜āt%ttvt : Øtstct ØtMvt Ftīt
*tt˙t˜ītctât` v<ctt`*t Yttˆltctât` ltstt ltj˙it uāt˙ ot`ītvt : 1. *tt˙t˜ītctât` : mt˙j#tCt t˜vtÙtct, mt˙Itó, uttÛtǐt, utctīt`Ct‘vt utÛÚ`o, õcÙtcttvt ct`īvõ ltitt utÙtt`itMttǐtt lt˙$t Ytt“t˜ltctī jtt˜MtÙttW ct`ī vFttvltjCt ct`ī mttitı jojFtīt`[‘ utctīt`Ct‘vtı t˜vtÙtlt ytǐt #t`$t ct`ī Ytt`ltj jtct`īš ctīt` itt˜ltı jt`š`t˜j˙it ut`īct stt˘Ftī t˜jFtīj`vmtı ctīt`t˜jÙttt˜ǐtmt ytǐtı Â.{ t˜FtC[tW ctīt` itt˜ltı IttCt‘vt ctījltt` ctmlt¸sttW ctīt` itt˜ltctīt`ı pt.[lcttIttCt‘, mtcttvttvltj ltitt stt˜Ytǐtcytctlt st#ttW ctīt t˜vtÙtctı itt`ǐtt, t˜j˙it, yt`ǐtvt, t˜[mctī ctīt pt.[lcttIttCt‘ı ctīt`Ctt`Ùt mt˙ct`it štct‘ī (ytǐttIttCt‘, štFt ctīt ut`t˜mtmtvt, ittFjtmctīt`Ft, ct`īvõt`Ùt ytǐtı cÙt¸l›tīctctit‘ t˜vtÙtct ct`ī stvltit‘lt itt˜lt, ct`īFtǐtj ct`ī t˜vtÙtctı ct˛īt˜$tct GFt«tn ctīt` itt˜lt (Yttt˜mitj GFt«tn Ytt`) it“ǐtt`t˜vtÙtvt mttFt`t˜#tctīlttı t˜ctt˜Mt° mttFt`t˜#tctīltt t˜mtætvlt, cttFct`īǐmtvt ctt`jǐt` ctīt utÙtt`itı ǐttj`vpt ctīt vFttvltjCt, ct`ittW ct`ī Ùtt`it ctīt t˜vtÙtctı õcÙtcttvt ctīt ct`it ct`ī mttit Ftt˜jctlt‘vt, õcÙtcttvt-vptt‘ mtctlt¸ǐÙtltt ct ltjǐt itt˜ltctīt`, mš^t`ctǐttFvt, j`vtt`ǐ[ mt˙KÙtt, MÙttvtltt, mt˙ctīt`Ct‘ vttt˜ǐtctīt mt` õcttW ct`ī utcttn mtcytvOtt` FttFptt`ǐtt` ctīt mtt$t t˜ct#tt`Ft, ytvttˇǐtt` ctīt mtctt`ctījCt ltitt Gmtct`ī mttcttvÙt stvt¸utÙtt`itı
n. v<ctt Yttˆt˜ltctât` : Gucttitt˜ltctīt` ct`ī t˜vtÙtct, SCš^tFtt`, ctītvttˇÛt›tī, mtctlttFtt`Ùt ltitt ®õt`uct Ftt˜jctlt‘vtı vuctt itt˜ltctī t˜ctYtct, n`ǐctnt`ǐpt ltitt t˜ityt ct`ī Ftīǐtvtı ct“ct:mtct`ǐt mtcytvOtıct:ǐttt˜mtÙtmt- ct:ǐt`Ftjtvt mtctt`ctījCtı Gl›tīctCtt`Ùt mt`ǐtı pttǐt -ct`īt˜ǐctvt utYttctımšt`Ftītvt ytt`ǐct“vt t˜vtÙtctı it“mttW ctīt itlÙttlctctī t˜mtætvltı ct`it ct`ī t˜ctltjCt ctīt ct“ct:mtct`ǐt t˜vtÙtctı vptt‘ ctīt mtctt˜ctYttptvt, it“mttW ctīt` t˜ctt˜Mt° vuctt, ctOÙt-ct¸òtī Ftit yt,tGvtt` itt˜ltı ct˛īt˜uCtctīt t˜ctt˜ctījCtı 9t`mttW ctīt` t˜ctt˜Mt° vuctt, sttFvmšt`vt ltitt [t`cttF‘ t˜mtætvltı ytt`vt ctīt t˜vtÙtct, Fǐt“ctī ctīt t˜vtÙtct, mtt“x x˜vtÙtltt˙ctīı mttnt ctīt vuctt`Ùt sttÙtvtt`ctījCt ctīt t˜mtætvlt ltitt vt#t$tt`Ùt mFt`ct:š^ctı voctt`Ùt t˜ctÛt¸cytctīvt Étjt t˜vtcvt lttFt GlFttovt ltitt ltvt¸ FtMtt`ltǐtvtı $tīCttlctctī lttFt ctīt` stctOttjCttı
3. ltj˙it uāt˙ ot`ītvt : ot`ǐtvt mtjǐt sttctlt‘itt˜ltı mtjǐt sttctlt‘itt˜lt ct`ī GotnjCt, õcÙtcttvt t˜mut˙it ltitt Sǐtmtt` Ftt˜jFtitı stutittctt` ltitt utittctt` ltj˙it`ı stctct˙t˜olt mtjǐt sttctlt‘itt˜lt, utCtt`t˜olt ot`ǐtvt ltitt stvt¸vttoı stvt¸vtto ctīt` ltt`#Ctlttı ltj˙it mtctt`ctījCtı njctt`t˜vtctī nǐtı mtctltǐt ltitt itt`ǐtt`Ùt ltj˙it`, ltj˙ittW ctīt stOÙttjt`FtCtı ot` stt˜Ytǐtcytctlt mtjǐt sttctlt‘itt˜ltÙtt˙ t˜ǐtmttptt sttct˛īt˜ltÙtt˙ı sttctltt´ ltj˙ittW ctīt Fttīt˜jÙtj t˜ctMǐt`utCt-ctit‘ ltitt t˜$tctīt`Ctt`Ùt ltj˙it`ı ctīǐtt ltitt mtcttn ct`it, t˜ctmFt˙oı njtFit`vt ctīt t˜mtætvltı sttÙttct Sct˙ ltj˙ittct ctīt t˜ctYttptvt, utīvt`ǐt yttFt˜utpct vÙttšvt-t˜j˙it ctt`ct`īǐtmtvt FCšjFt`ījt`ctt`xx, Ft`īyt,t`Ftjt, FCšjFt`ījt`ctt`šjı t˜ctctlt‘vt-utīvt`ǐt ltitt utītvtntWFtīj Fttīt˜jÙtvt vFttvltjCt ct`ī vFt ctW t˜ctctlt‘vtı sttÙtlttctītj Sct˙ ct˛òttctītj ÉtjctītW mt` utīvt`ǐt ltitt utītvtntWFtīj t˜ctctlt‘vtı mtt`Ot`ctīt`j, Sctīǐt ltitt ytn¸t˜mǐtštW mt` t˜ctctlt‘vt, «t`t˜š˙it ctīt` t˜ctYt`ovt #tctlttı utctītt˜Mtlt GFtctījCtı j`ǐt` ctīt cttvtctīı Ot,¸ctCt, Ot,¸t˜ctlt utctītMt (j`Ktt`Ùt, ct˛xxx`Ùt ltitt ot`It‘ct˛xxx`Ùt) ctīt GlFttovt ltitt mt˙mttÛtvtı ytt,mšj-t˜vtÙtct, t˜ÉctstFtctlt‘vt ctīt ntFit`vt t˜mtætvltı utctītMtt`Ùt IttCt‘vt, Ftt`ǐttjt`ctt`xx, ǐt`mtj ßtt`lt (nt`t˜ǐtÙtvtctvtt`Ùtt`vt, vytt` ltitt stOt‘ Ûttǐtctī [xXxx`[) mittvtt`Ùt Sct˙ mtcttt˜Ùtctī ctīǐtt mtcytæltt ctīt` stctOttjCttı n`ǐtt`«ttFtīt` t˜mtætvlt ltitt stvt¸utÙtt`itı
Yttˆt˜ltctâ t˜āt%ttvt: t˜Éltt`*t ØtMvt-Ftīt
ātˆo*t¸lt ltstt Ût¸cytctâlāt, ⭲ttOt¸t˜vtctâ Yttˆt˜ltctât` ltstt Fīt`ctäš^tt˜vtctât`
1. ātˆo*t¸lt ctât Ût¸cytctâlāt : cttīǐtcyt ctīt t˜vtÙtct ct“oÙt¸lt #t`$t ittmt ctīt t˜vtÙtct, ct“oÙt¸lt t˜ctYtct, mtctvFt #t`$t ctW mtctt˙it Ftjtct“oÙt¸lt ltitt stvttct`t˜Mtlt itt`ǐtt`Ùt Ûttǐtctī n`lt¸ FttÙtpttX Sct˙ ǐttFǐttmt ct`ī mtctt`ctījCt t˜ytvo¸ sttct`Mt ltitt stvtvlt mt˙Ûttǐtctī ltǐtı ct“oÙt¸lt Ottjt: t˜ctījÛttFtī ctīt t˜vtÙtct ltitt Fmtct`ī stvt¸utÙtt`it: Üctt`š mšt`vt mt`lt¸, ct`īt˜ǐctvt [ytǐt t˜yt,pt, ct“ījt`Ftītmšj t˜yt,ptı yttÙtt`-mttctš‘ t˜vtÙtct ltitt Gmtct`ī stvt¸utÙtt`itı ScFtt`Ùtj ctīt Ftt˜jFtitt`Ùt t˜vtÙtct ltitt stvt¸utÙtt`itı Ût¸cytctīt`Ùt ut`jCt ltitt #t`$t ltt`›tltt, Ût¸cytctīt`Ùt Mt`ǐtı ct˛òttctītj ct¸īC[ǐtt` ct`ī st#t Ftj Ût¸cytctīt`Ùt #t`$t, n`ǐctnt`ǐpt ct¸īC[ǐtt`ı ct“oÙt¸lt Ût¸cytctīt`Ùt ut`jCt: Ft“ījt[` Sct˙ ǐt“vpt ctīt t˜vtÙtctı mct Sct˙ stvÙtt`vÙt ut`jctīlct utlÙttctltt´ Ottjt, Sǐt mtt` sttj Ftt˜jFtit, ßt`Ctt` Sct˙ mtcttvltj stvt¸vtto Ftt˜jFtit, it¸Ctltt it¸Ctt˙ctīı ct“ct:mtct`ǐt ct`ī mtctt`ctījCt ltitt ct“oÙt¸lt Ût¸cytctīt`Ùt ltj˙ittW ctīt` stvt¸utmit utct˛īt˜ltı FttF‘t˜Cš˙it ct`ct:šjı õcÙttW ctW Ût¸cytctīt`Ùt #t`$t utt˜lt stvt¸ Ft`ījt` utt˜ltFt`ījt` ltitt Ft`ījt` Ût¸cytctīlct (it¸Cttlctctī GFttitct ctt$t) Mt“t˜itǐÙtlttı
n. ⭲ttOt¸t˜vtctâ Yttˆt˜ltctât` : ntF[^t`ptvt FtjcttCt¸ ctīt ytt`x x˜mtætvlt, Fǐt`ct:š^tvt, Fǐt`ct:š^tvt t˜mFtvtı utctītt˜Mtlt Sct˙ Sct:mt-j` mFt`ct:š^tı mšvt‘-itjǐt“ctī utÙtt`it ltitt mittt˜vtctī ct:cttCšt`ctījCtı FtjcttCt¸ ctīt ct`ct:xx ctt[ǐt mFt`ct:š^ctt` Fto, mFt`ct:š^ctt` j`KttsttW ctīt` mtt#ct mt˙jÛtvtt J-j ltitt L-S Ùt¸ictvtı ptt`cttvt utYttctı FttǐttW ctīt stFtctpt‘vt t˜mtætvltı ot` mtctlt¸ǐÙt ltitt t˜Yt÷t Fǐt`ct:š^tvttW ctīt` mFt`ct:š^ctt` Ftoı Fǐt`ct:š^tt˜vtctī yt“C[ mFt`ct:š^t ctīt` mittǐt ltitt mtt#ct mt˙jÛtvttı jctvt utYttctı utctītMt ct“oÙt¸lt utYttct ›tītcFtšvt utYttct, [t` yt,titǐtt` ltj˙it`ı ltj˙itctīCt o˛ct“ltlttı stt˜vtt˜§tltltt ctīt t˜mtætvltı ct:cttCšct Ùtt˙t˜$tctīt` ctīt` stt˜YtOttjtS˙ı ßtt“t˜[˙itj mtctt`ctījCt ctīt stvt¸utÙtt`it (1) yttct:mt ctW t˜mitlt ctīCt ltitt (2) Fto t˜ctYtct ct`ī sttjFttj itt˜lt ctWı Sctī t˜ctctt`Ùt ntcttˇt˜vtctī ot`ǐtctī, sttFitvt cttǐÙt ltitt sttFitvt Ftīǐtvtı j`t˜[Ùtt`Xxx˜ct‘ltt, stǐFtīt, ytt`št ltitt ittctt t˜ctt˜ctījCtı stǐFtīt #tÙt ctīt uttjt˜cYtctī t˜mtætvlt, vttt˜Ytctīt`Ùt ytvOtvt vptt‘, cttmt mFt`ct:š^t`mctīt`Ftt`, mt`ctt` ScFtt`t˜jctīǐt cttmt Ftītct‘tǐtt vttt˜Ytctīt`Ùt t˜ctKtC[vt ltitt mt˙ǐtÙtvtı uttjt˜cYtctī t˜jSct:xx Ytt“t˜ltctīt`ı cttǐt ctīCt ltitt Gvtct`ī ctitt`´ctījCtı ltt`›t ltitt ctīlt ct“oÙt¸lt Ût¸cytctīt`Ùt stvlt‘t˜›tīÙttı ctīCtlctt˜j$t mttFct:ǐtt`š^tvt j`Ktt`Ùt lctt˜j$t stt˜ltÛttǐtctīltt ctīt uttjt˜cYtctī zttvtı
3. Fīt`ctäš^tt˜vtctât` : 9t`mt ctīt yt“C[ t˜mtætvlt: Ûttǐtctī ct¸īÛttǐtctī ltitt stæ‘Ûttǐtctīı vt“pt ltitt ctt¢t stæ‘Ûttǐtctīı Ftt` Svt mt˙t˜Ot, itt˜ct‘mšj pt`vtj [xXxx`[ı FtÕt Sct˙ stivt stt˜Ytvtlt Ftt` Svt mt˙t˜Otı mtt“j mt`ǐtı j`t˜[ÙttW sttct˛t˜òt ltj˙ittW ct`ī t˜o°t`ctījCt, utctOt‘vt ot`ǐtvt, ctt[¸ǐt`Mtvt ltitt mt˙mttÛtvt ctW [xXxx`[ ltitt š^t˙t˜ptmšj ctīt GFtÙtt`it š^t˙t˜ptmšj stt˜Yt«tnCtı š`ǐtt`t˜ctptvtı ǐttt˜ptctī it`š ltitt Gvtct`ī mtlÙt lttt˜ǐtctīt Gvtct`ī ct¸īÚ GFtÙtt`itı
5. itt˜Ctlt - Øtstct ØtMvt Ftīt
xxx˜Ktctâ ytt`ūt itt˜Ctlt : mtt˜oMt mtctt˜° sttOttj, Ftt˜jt˜ctlt ptt˜vtlt mtctt˜° ctīt` t˜ctctt, j“t˜Ktctī vFttvltjCt j“t˜Ktctī vFttvltjCt ctīt` ctīt`t˜š ltitt MttvÙtltt ct“īǐtt` n“t˜ctǐšvt utct`Ùt, stt˜Ytǐt#tt˜Ctctī cttvt ltitt stt˜Ytǐt#tt˜Ctctī mtt˜oMtı j“t˜Ktctī vFttvltjCt ctīt sttcÙttn, Ft˙t˜òtī ltitt mltcYt mtctmt˙vtÙtvt, mtt`Fttvtctī vFt, lt¸ǐÙtltt, mt˙ctt‘it mtctltt ltitt GFtvFtltt, t˜ctt˜nlt vFttW ctW mtcttvtÙtvtı ǐttt˜cytlt, mtctt˜ctlt, t˜ctutÙt mtctt˜ctlt S`t˜ctīctī, nt˜ctšt` ltitt t˜ctutct nt˜ctšt` sttcÙttn, Gvtctīt stt˜Ytǐt#tCtctī cttvt, t˜æFttltt` ltitt nt˜ctšt` vFttW ct`ī ǐttt˜cytctī ltitt St˜ctīctī mtcttvtÙtvtı Otvttlctctī t˜vtt˜§tlt t˜æFttltt` vFt, mtnctītt˜ǐtctī mtcttvtÙtvtı ctâītvt : cttmltt˜ctctī mt˙KÙttS˙, mtt`cttS˙ mttvltlÙt, Fto ctīǐtvtt`Ùtltt, cttOÙtcttvt utct`Ùt š`ǐt`j utct`Ùt, stt˜vtOttÙt‘ vFt, Gt˜ÛÛt° ltitt t˜vtt˜cvt‰ı ytvOtltt, stvt¸j`KtjCt, stvltjmFtMtt´ı ytn¸Ûtj Ftīǐtvt, sttt˜Mt˙ctī stctctīǐtvt Gt˜ÛÛt‰ ltitt t˜vtt˜ct‘t˜vt‰ı pt“ctīt`ytt`Ùtı t˜vtt˜§tlt ltitt stt˜vtt˜§tlt mtcttctīǐt t˜ÉMt‘ ltitt t˜$tMt: mtcttctīǐt (ct`īctǐt utt˜ctt˜OtÙtt˙) ytt`št ltitt ittctt FtīǐtvttW ctW stvt¸utÙtt`itı #t`$tFtīǐt sttÙtltvt, it¸vlct ct`īvõı ot` ltstt ltt`vt t˜ātctt⭲ttW ctât` ātˆMīt`t˜<tctâ ū*ttt˜ctt˜lt : ctītltt´Ùt ltitt Ot,¸ctt`Ùt t˜vtoˇMtt˙ctītW ctW ot` t˜ctcttsttW ctW Sctī Ittltt`Ùt ltitt t˜ÉIttltt`Ùt mtctt`ctījCtı mtctltǐt, itt`ǐtt, FtjctǐtptÙt, ot`It‘ t˜ctòtpt ltitt Sctī Sct˙ ot` FtjlttW cttǐtt stt˜lt FtjctǐtÙtpt ltitt Gvtct`ī uttjt˜cYtctī it¸Ctı mtctt˜° ctW ct›tīltt ltitt ctjt`.[ ut“īvt`š mtt$tı ⭲tātctâīt mtctt`ctâjCt : stctctīǐt mtctt`ctījCt ctīt` ctīt`št` ltitt Ittlt, utitct ctīt`št` ltitt utitct Ittlt ct`ī mtctt`ctījCt, Ft˛itct:ctījCtt`ÙtÛtj, mtctIttlt j“t˜Ktctī ltitt Ùtittltit stctctīǐt mtctt`ctījCt stÛtj it¸Ctt˙ctītW mtt˜nlt stctctīǐt mtctt`ctījCtı Fttjctī Ftīǐtvt ltitt eax, cos ax, sin ax, xm, eax, cosbx, e9x, sin bx ct`ī mtvoYt‘ ctW t˜ctMt`ut mtcttctīǐtı mtt˜oMt t˜ātMīt`<tCt : mtt˜oMt ytt`pt itt˜Ctlt, stt˜oMt Ûtj ct`ī mtt˜oMt FtīǐtvttW ctīt stctctīǐtvt, utctCtltt, [tFctptˇvmt ctīǐt‘ ct`ī ctītltt´Ùt, yt`ǐtvtt` stt“j itt`ǐtt`Ùt t˜vto`Mtt˙ctītW ctW t˜vtvFtCt ltitt Gvtct`ī Ytt“t˜ltctī t˜vtct‘Ûtvtı GÛÛtltj ctīt`št` ct`ī stctctīǐtpt, mtt˜oMt ltlmtctctī ltitt mtt˜oMt mtctt`ctījCt, ittGmt ltitt mšt`ct:mt utct`Ùtı Xxx˜oMt t˜ātMīt`<tCt : utt˜oMt ctīt` Ftt˜jYttutt, t˜vtoˇMtt˙ctīt` ct`ī vFttvltjCt utt˜lt Ftt˜jctltt´ ltitt mtn Ftt˜jctltt´ utt˜oMttW ctīt Ùtt`it ltitt it¸CtvtFtīǐt, utt˜oMttW ctīt mt˙ct¸īltvt, sttvltj it¸CtvtFtīǐt, cttǐt utt˜oMt, t˜›tīmšt`Ft`īǐt utltt`ctī, mtn Ftt˜jctltt´ stctctīǐtvt, utt˜oMt mt˙ct`īǐtvt ctW utctCtltt, ctīǐt‘ ltitt [tFctjpt`vmtı msttˆt˜ltctât` : ctīǐt‘ t˜vtctīÙt ctīt mt˙lt¸ǐtvt ctītÙt‘, stt“x x˜ctYtct vptt‘, Itut‘Ct, mttcttvÙt ct“īš`vtjt`, ctīt˜ǐFtlt ctītÙt‘ ct`ī t˜mtætvlt, mt˙lt¸ǐtvt ctīt mittÙtt`lct, ltt`vt t˜ctcttsttW ctW ytǐttW ctīt mt˙lt¸ǐtvtı itt˜ltctât` : mctlt˙$t stt“j cÙtctjt`Xxx` ctīt` ctīt`št`, mtjǐt j`Ktt`Ùt itt˜lt, mtjǐt sttctlt‘ itt˜lt, mtctltǐt Ftj itt˜lt, ut#t`Ftt` cÙtvæ itt˜lt, ctītÙt‘ ltitt vptt‘, sttct`itt` ytǐttW ct`ī xxXxx`vt itt˜ltı ct`īFtǐtj ct`ī t˜vtÙtctı ct`īvõt`Ùt ytǐttW ct`ī xxXxx`vt ctī#ttÙtWı Ftt˜jctltt´ õcÙtcttvt ctīt` itt˜ltı utt˜ltjt`Xxx` cttOÙtct ctW itt˜ltı õāt mstˆt˜ltctât` : it¸v ltjǐttW Ftj otyt, t˜oÙt` n¸S ytǐt t˜vtctītÙt ct`ī stvltit‘lt ltjǐttW ctīt mtvlt¸ǐtvt, otyt ct`īvõ, ct›tī ltǐttW Ftj utCtt`octī cttvt, lt“jlt` n¸S t˜FtC[t` ctīt mtvlt¸ǐtvt, mtvlt¸ǐtvt ctīt mittt˜Ùtlct stt“j it“mttW ctīt otyt, cttÙt¸ctC[ǐt mtcytvOtt` utMvtı
itt˜Ctlt - t˜Éltt`*t ØtMvt-Ftīt
ytt`ūt itt˜Ctlt : ‘mtcttn, GFtmtcttn, mttcttvÙt GFtmtcttn, mtcttnt` ctīt` mtcttctītt˜jctīltt, t˜ctYttit, mtcttn, sttOttjt` lt¸ǐÙtctītt˜jltt utct`Ùt, t˜mtǐttW utct`Ùt,
›tīctÛtÙt mtcttn, ct“īǐtt` utct`Ùt ctǐtÙt ltitt it¸Ctpttctǐtt`, ct¸KÙt it¸Ctpttctǐtt` utt˙lt, stt˜æltt`Ùt it¸CtvtKtC[ uttvlt ltitt Ùttctītt˜ǐt[t`Ùt uttvlt, #t`$t t˜ctmlttj Ftt˜jt˜ctlt #t`$tı āttmltt˜ātctâ t˜ātMīt`<tCt : xxx˜jctī mtctt˜° xxx˜jctī mtctt˜° ctW stvt¸›tīct ct`ī t˜ctMt`ut mt˙oYt‘ mtt˜nlt Gvtctīt` mtt˙t˜mitt˜ltctītR, ctīt`Mtt` stvt¸›tīct, FttCt‘ltt, Fttt˜lt‘, mt˙ltlt Ftīǐtvt, Sctī mtcttvt mtt˙ltlÙt mt˙nlt mtct¸ÛÛtÙttW Ftj mt˙ltlt FtīǐtvttW ct`ī it¸CtOtct‘ı jt`cttvt mšt`ǐtpt` mtcttctīǐt, stvt˙ltmtcttctīǐt ltitt Gvtct`ī stt˜mltlct utt˜ltyt˙Ot, ytn¸Ûtj’ FtīǐtvttW ct`ī stctctīǐt, mFt° Ftīǐtvt-utct`Ùt, Gt˜ÛÛt‰ ltitt stt˜ǐFt‰ ı cttmltt˜ctctī ltitt mtt˜cctßt, FtotW ctīt` ßt`t˜CtÙttW ctīt t˜vtjFt`#t stt“j mtutt˜ltyt˙Xxx`, stt˜YtmtjCt, ßt`t˜CtÙttW ctīt` Ft¸vt: cÙtctmitt, Sctī mtcttvt stt˜YtmtjCt, stvtvlt it¸CtvtFtīǐt, ßt`t˜CtÙtt ct`ī t˜ǐtÙt` mttlt˙lÙt stctctīǐtvtt`Ùtltt ltitt mtcttctīǐtvtt`Ùtltt, ytn¸mtcttctīǐtı mtt˜cctßt t˜ātMīt`<tCt: ct“Mǐt“t˜utctī Ftīǐtvt, ctīt`Mtt` utct`Ùt ctīt`Mtt` mtcttctīǐt mtt$t, Ittlt ßt`t˜CtÙtt˙, š`ǐtj ßt`t˜CtÙtt˙,t˜ctt˜Ût$tlttS˙, ctīt`Mtt` stctMt`ut utct`Ùt ltitt Ftt˜jj`Ktt mtcttctīǐtvtı ⭲tt˙t˜Mtctâ ⭲tātctâīt mtctt`ctâjCt : stt˙t˜Mtctī stctctīǐt mtctt`ctījCttW ctīt ytvttvtt, utitct ctīt`t˜š ct`ī stt˙t˜Mtctī stctctīǐt mtctt`ctījCttW ct`ī utctītj, Mttt˜Ft‘š t˜ctt˜Ot, stÛtj it¸Ctt˙ctītW mtt˜nlt sttt˜Mt˙ctī stctctīǐt mtctt`ctījCtı
*tt˙t˜ītctât` : cÙttFtt`ct˛īlt t˜vtoˇMtt˙ctī, cÙtctjt`Ot nt`ǐtt`vtt`ctt` stt“j it“j-nt`ǐtt`vtt`ctt` t˜vtctītÙt, t˜[stǐtcytš‘ t˜mtætvlt ltitt ǐtt«ttvÙt mtctt`ctījCt, pt.[lct sttIttCt‘, ot` t˜ctcttsttW ctW Â.{ t˜FtC[t` ctīt` itt˜ltı õāt itt˜ltctât` : mttlt˙lÙt mtctt`ctījCt mt˙ct`it stt“j vptt‘, stMÙttvt utcttn t˜mtætvlt, t˜æt˜ctctt`Ùt itt˜lt, stt˜YtßtctCt itt˜lt, œtt`lt stt“j stt˜Ytitctı mt˙K*ttlctctâ t˜ātMīt`<tCt: stt˜ctptt`Ùt ltitt ytn¸Fto mtctt`ctījCt-mtjCtt`Ùtvt t˜ctt˜Ot, t˜ÉYttptvt,t˜ctiÙtt t˜mitt˜lt t˜ctt˜Ot, Ú`ovt ltitt vÙttšvt-jFtīmtvt stt“j Fmtct`ī stt˜YtmtjCt ctīt` ctīt`št`ı ⭲tvltāt´Mtvt ltstt mt˙K*ttlctctâ ⭲tātctâītvt : mtcttvt Ùtt stmtcttvt mtt`Fttvt stcttFt mtt˜nlt ytn¸Fto stvltctˇMtvtı $ttt˜š FtotW mtt˜nlt mt˙KÙttlctctī stctctīǐtvt mtt$tı mttOttjCt stctctīǐtvt mtctt`ctījCt ctīt mt˙KÙttlctctī mtcttctīǐtvt: sttÙtǐtj t˜ctt˜Ot, ytn¸mtt`Fttvt uttictòtīt-mt˙Mtt`Otctī t˜ctt˜OtÙtt˙-S`[ct stt“x x˜ctǐtvt` ctīt` t˜ctt˜Ot, stt˜YtmtjCt stt“j mittt˜Ùtlct, ‘‘viit`ct¸īó` t˜ctt˜OtÙtt˙ı mt˙t˜›tâ*t t˜āt%ttvt : itt˜Ctltt`Ùt utt`«ttctvt-stctct¸Kt mtct¸ÛÛtÙtt` ctīt` Ftt˜jYttutt ltitt ct¸īÚ uttitt˜ctctī it¸Ct, utmtct¸ÛÛtÙt t˜ctt˜OtÙtt˙ı sttÙtltt` Kt`ǐt stt“j Gvtct`ī nǐtı
6. Yt˛itt`īt : Øtstct ØtMvt - Ftīt KtC[-⭲t : Yttˆt˜ltctâ Yt˛itt`īt
1. Yt˛-⭲ttctât˜jctât` : Ft˛ictt` ctīt` GlFtt˜òt Sct˙ mt˙jÛtvtt, Yttmt˙Ûtǐtvt, Fǐt`š t˜ctctlt‘vt ltitt Ftct‘lt t˜vtctt‘Ct, Yttmt˙ǐtvt, pcttǐttct¸Ktt` t˜›tīÙtt, stFt#tÙt Sct˙ stFtjovt, stFtjovt, Ût›tī: Ytt“cÙttctītj ctīt ›tīct-t˜ctctītmt-ptǐtt`Ùt, t˜ncttvtt`, Ftctvt mttct¸tõ˜ ctī ltitt ctītmš‘: Ft¸vtvlittvt Sct˙ ytn¸Ût›tīt`Ùt Ytt-sttct˛īt˜ltÙtt˙ı
n. ūtītātt*t¸ t˜āt%ttvt : cttÙt¸ctC[ǐt ctīt` ytvttctš Sct˙ mt˙jÛtvtt, mttÙt‘t˜YtlttFt Sct˙ Guctt ytptš,cttÙt¸ctC[ǐtt`Ùt otyt Sct˙ Ftctvt, sttõ‘ltt Sct˙ ct˛t˜°: cttÙt¸ jtt˜MtÙtt Sct˙ cttltt«t: Ût›tīcttlt-GlFtt˜òt, Ftt˜jmt˙ÛtjCt Sct˙ mtcytt˜vOtlt ctt“mtct, t˜ctÕt ptǐtcttÙt¸ ctīt ctitt´`ctījCt: ctīt`Ft`vt ltitt ittvt‘ct`šı
3. mtct¸õ t˜āt%ttvt : mtct¸õltǐt ctīt` ytvttctš, ǐtctCtltt, mttct¸t˜õctī OttjtS˙ Sct˙ pcttj-Yttšt, mttct¸t˜õctī t˜vt#t`Ft utcttǐt t˜Ytt˜òtÙtt˙ı
4. t˜ctš˛št` uāt˙ ātvtmFtt˜lt : t˜ctctītmt, ctitt´ctījCt Sct˙ t˜ctÕt- t˜ctltjCt, t˜ctš˛št` Sct˙ ctvtmFtt˜lt ctīt` FttjmFtt˜jctīltt, pt“ct mtct¸otÙt Sct˙ stvt¸›tīctı
5. Fttt˜jt˜mstt˜ltctât` ltvīt : mt˙ctīǐFtvtt, Fttt˜jt˜mitt˜ltctīt` ltv$t ctīt` mt˙jÛtvtt Sct˙ ctītÙt‘Mtt`ǐtltt, Ftt˜jt˜mitt˜ltctīt` ltv$t ct`ī utctītj, utct¸Kt ptt`ctt`ctı Fttt˜jt˜mitt˜ltctī ltv$ttW Ftj cttvtct ctīt utYttct ltitt YttctC[ǐtt`Ùt Fttt˜jt˜mitt˜ltctīt` mtctmÙttÙtWı
KtC[-yt : cttvtāt Yt˛itt`īt
1. Yttˆitt`t˜ītctâ t˜Ûtvltvt ctât ›tâct-t˜ātctâtmt : ptct‘vt utīt˙mtt`mtt`, t˜yt,t˜šMt, vmtt`, ltitt Yttjltt`Ùt Yttitt`ǐt ct`òttsttW ct`ī Ùtt`itotvt, cttvtct-FtÙtt‘ctjCt stvlt‘mtcytvOt ct`ī Ftt˜jctlt‘vtMtt`ǐt t˜Ûtvltvt Ftīǐtctī (Ft“jt[tF‘ct), utlÙt#tctto ctīt utYttct Sct˙ mtt˙t˜KÙtctīt`Ùt ›tītt˜vlt, Yttitt`ǐt ctW ctt˘[ǐt Sct˙ lt˙$t Ytt“itt`t˜ǐtctī t˜Ûtvltvt ctW stt˜Ytvtct utct˛t˜òtÙtt˙ (›tītt˜vltctītjt`, sttÛttjFtjctī, Ft`īvtt`ct`vttǐttt˜ptctīǐt Sct˙ Fttt˜jt˜mitt˜ltctīt` t˜Ûtvltvt Ftīǐtctī ct`ī t˜ctMt`ut mtvoYt‘ ctW)ı
n. cttvtāt Yt˛itt`īt : utct¸Kt uttct˛īt˜ltctī uto`MttW ctW cttvtct t˜vtcttmt-cttvtct ctīt stYÙt¸oÙt Sct˙ utpttt˜ltÙtt˙, mtt˙mct˛īt˜ltctī t˜ctctītmt Sct˙ ÛtjCt, utct¸Kt mtt˙mct˛īt˜ltctī Ftt˜jctC[ǐt, ptvtmt˙KÙtt ct˛t˜æ Sct˙ t˜ctltjCt, stvltjt‘°^t`Ùt utctptvt, ptvtt˙t˜ctīctīt`Ùt mt˙›tīctCt ltitt mtctctītǐtt`vt ptvtmt˙KÙtt mtctmÙttÙtWı
3. ⭲tt˜Otāttmt Yt˛itt`īt : stt˜Otcttmt Yttitt`ǐt ctīt` mt˙ctīǐFtvtt, «ttctt`Ct stt˜Otcttmt-utct˛īt˜lt, GlFtt˜òt, utctītj Sct˙ utt˜ltvFtı vtitjt`Ùt stt˜Otcttmt ctīt` mt˙ctīǐFtvtt, vtitjt`ctījCt ct`ī utt˜ltvFt, utt˜›tīÙttÙtW Sct˙ Ftt˜jCttct, ct`īvõ mitǐt t˜mtætvlt, vtitjtW ctīt ctitt´ctījCt, vtitj-Ftotvt¸›tīct, vtitjtW ctīt` sttctītt˜jctīt`, «ttct vtitj mtcytvOt: vtitjt`Ùt Ftt˜j#t`$t Sct˙ vtitj GFttvltı
4. ⭲ttt˜st‘ctâ Yt˛itt`īt : sttOttjYttlt mt˙ctīǐFtvttÙtW, mt˙mttOtvt ctīt` mt˙ctīǐFtvtt, ctitt´ctījCt, mt˙j#tCt Sct˙ utytvOt, ct˛īt˜ut ctīt` utct˛īt˜lt Sct˙ utctītj, ct˛īt˜ut Ytt- GFtÙtt`it ct`ī stctt˜mitFtjctī t˜mtætvlt, t˜ctÕt ct`ī ct˛īt˜ut uto`Mt, utct¸Kt FtīmtǐtW, Ktt˜vtpt Sct˙ vptt‘ mt˙mttOtvt-mittt˜vtctī GFtǐtyOtltt, YtC[tj ltitt GlFttovt utt˜ltvFt, t˜ctÕt vptt‘ mt˙ctīš Sct˙ t˜ctctīǐFt ctīt` Ktt`ptı GÅtt`it : stt“ett`t˜itctī stctt˜mitt˜lt ct`ī t˜mtætvlt, t˜ctÕt ct`ī utct¸Kt stt“ett`t˜itctī uto`Mt, utct¸Kt Gett`it- ǐtt`nt ltitt FmFttlt, ctītitpt, ctvt, Ft`š^t`ǐt-jmttÙtjvt, ctt`šjitt.[t` ltitt Ftt`lt t˜vtctt‘Ct- Gvtct`ī stctt˜mitt˜ltctī utt˜ltvFt Sct˙ t˜ctctītmt stvltjt‘°^t`Ùt cÙttFttj, cÙttFttt˜jctī utKtC[, cÙttFttt˜jctī cttit‘, Ftòtvt Sct˙ YttctC[ǐtt`Ùt cÙttFttt˜jctī ct`īvõ, t˜ctÕt ctW sttt˜it‘ctī t˜ctctītmt ct`ī utt˜ltvFt, mt˙It˛lt t˜ctctītmt ctīt` mt˙ctīǐFtvtt Sct˙ GFttitctı
5. jtūtvtt`t˜ltctâ Yt˛itt`īt : jt°^ Sct˙ jtpÙt ctīt` mt˙ctīǐFtvtt-mtt`cttvlt, mtt`cttÙtW Sct˙ ‘‘ytFtīj’’ #t`$t, ÜoÙtmitǐt Sct˙ GFttvlt, mt˙Itctto, mtct-mttctt˜Ùtctī t˜ctÕt Ytt-jtptvtt`t˜ltctī mtctmÙttÙtWı
Yt˛itt`īt : t˜Éltt`*t ØtMvt Ftīt - Yttjlt ctât Yt˛itt`īt
1. Øttct˛ât˜ltctâ māt™Ft : Ytt“t˜ctctīt`Ùt ›tīct Sct˙ mt˙jÛtvtt-GÛÛttctÛt Sct˙ stFtcttn t˜ctš˛št` Sct˙ ctvtmFtt˜lt, t˜ctš˛št` stct›tīctCt ltitt t˜vtct‘vtt`ctījCt, Yttjltt`Ùt cttvtmttvt ctīt` GlFtt˜òt Sct˙ utt˜›tīÙtt, ptǐtcttÙt¸ utto`t˜MtctījCt, uttct˛īt˜ltctī utto`t˜MtctījCtı
n. cttvtāt māt™Ft : ptvtmt˙KÙtt ctīt t˜ctltjCt Sct˙ ct˛t˜æ , ptvtmt˙KÙtt ctīt` mt˙jÛttlctctī t˜ctMt`utlttÙtW, ctītt˜ǐtctī-utto`t˜Mtctī t˜Yt÷tlttÙtW, utto`t˜Mtctī «ttctt`Ct stt˜Otcttmt, utt˜ltvFt ltitt «ttcÙt stctītt˜jctīt`ı
vtitjt`*t ⭲tt˜Otāttmt : Yttjltt`Ùt vtitjtW ctīt` ctitt´ctījCt-stctt˜mitt˜ltctī, ctītÙtt‘lctctī, Ftotvt¸›tītt˜ctctī-vtitj uto`Mt, vtitj stctītt˜jCtt`, vtitjt`ctījCt Sct˙ vtitjt`Ùt vtt`t˜ltı
3. ct˛ât˜<t : stctmittFtvtt, t˜mt˙ÛttF‘, vptt‘, Gct‘jctī utÙtt`it, ctMtt`vtt`ctījCt, ct˛īt˜utitlt Ytt-GFtÙtt`it ctīt` utto`t˜Mtctī t˜ctMt`utlttS˙, yt˙ptj Yttt˜ct ctīt` mtctmÙttÙtW Sct˙ mt¸Ottj, Ftīmtǐt utt˜ltvFt Sct˙ itnvtltt, ct˛īt˜utitlt o#tltt Sct˙ GlFttoctīltt nt˜jlt ›tītt˜vlt ct`ī utYttct, ct˛īt˜ut uto`Mt, ct˛īt˜ut-Ftt˜jt˜mitt˜ltctīt` oMttsttW ct`ī t˜ctMt`ut mtvoYt‘ ctW ct˛īt˜ut mtctmÙttÙtW Sct˙ Yttt˜ct mt¸Ottj, mtmÙt mt˙Ùtt``ptvt Sct˙ ct˛īt˜ut utto`Mtt`ctījCtı ct˛īt˜ut ctīt sttOt¸t˜vtctīt`ctījCt Sct˙ ct˛īt˜ut t˜vtÙtt`ptvtı
4. Ktt˜vtūt uāt˙ vūtt‘ mt˙mttOtvt : stctt˜mitt˜ltctī utt˜lt®Ft, YtC[tj Sct˙ GlFttovt utct˛t˜òtÙtt˙, Ktt˜vtpttW ctīt` Ftt˜jFttjctīltt, vptt‘ mt˙mttOtvt, ctīt`Ùtǐtt, Ft`š^t`t˜ǐtÙtct, ptǐt t˜ctet¸lt, ytn¸o`Mtt`Ùt vtot` Ittšt` Ftt˜jÙtt`ptvttÙtW, vptt‘ mt˙ctīš ltitt t˜ctctīǐFt ctīt` Ktt`ptı
5. GÅtt`it : stt“ett`t˜itctī t˜ctctītmt, utct¸Kt Gett`it ǐtt`nt Sct˙ FmFttlt, ctvt, ctītitpt, mtt`ct`vš, Gct‘jctī, Ûtt`vtt` ltitt Ft`š^t`-jmttÙtvt, stt“ett`t˜itctī mt˙t˜Mǐt° Sct˙ uto`Mtı
6. Ftt˜jātnvt uāt˙ ā*ttFttj : j`ǐtcttit‘ Sct˙ mt.[ctī lt˙$t vttitt˜jctī G[˛[Ùtvt Sct˙ ptǐt Ftt˜jctnvt ctīt` mtctmÙttÙtW Sct˙ mtcYttctvttS˙, stvltutto`t˜Mtctī ctmlt¸- utcttn, stvltjt‘°^t`Ùt cÙttFttj ctīt` vtt`t˜lt Sct˙ utcttn, utt˜ltvFt, utct¸Kt ytvojittn Sct˙ cÙttFttj ct`īvõı
7. Xxxx`t˜Mtctâ t˜ātctâtmt uāt˙ t˜vt*tt`ūtvt : utto`t˜Mtctī t˜ctctītmt ctīt` mtctmÙttÙtW Sct˙ #t`$tt`Ùt t˜ctctītmt jCtvtt`t˜lt, Ytt“itt`t˜ǐtctī ltitt t˜vtÙtt`ptvt uto`Mt, ctntvtitjt`Ùt, ptvtpttltt`Ùt, Ftct‘ltt`Ùt, mttKtt Ftt`t˜.[lt uto`MttW n`lt¸ t˜vtÙtt`ptvt ltitt ptǐttitct #t`$t utytvOtvtıutto`t˜Mtctī t˜ctctītmt ctW t˜ctutctlttÙtW ltitt Ft˙Ûtctutt´Ùt Ùtt`ptvttsttW ctW vtt`t˜lt, mt˙t˜ctctītmt (Ftt˜jt˜mitt˜ltctīt`Ftjctī t˜ctctītmt) n`lt¸ t˜vtÙtt`ptvtı
8. jtūtvtt`t˜ltctâ ā*tātmstt : S`t˜ltntt˜mtctī Ftt˜jut`#Ùt ctW Sctīltt Sct˙ t˜ctt˜ctOtltt, jtpÙt Ft¸vt‘it9vt, utto`t˜Mtctī Ût`ltvtt Sct˙ jt°^t`Ùt Sctīltt, ct`īvõ jtpÙt mtcytvOt ct`ī Ytt“itt`t˜ǐtctī sttOttj, Yttjlt ctīt` stvltjt‘°^t`Ùt mtt`cttS˙ ltitt ltlmtcytvOtt` Ytt-jtptvtt`t˜ltctī mtctmÙttÙtW, Yttjlt Sct˙ t˜nvo ctntmttitj ctīt` Ytt- jtptvtt`t˜lt, Yttjlt Sct˙ o#t`mtı
7. ⭲tst‘MttŒt : Øtstct ØtMvt-Ftīt KtC[ ctâ : ⭲ttt˜st‘ctâ t˜mtætvlt
1. GFtYtt`òtât ctât` ctt˙it uāt˙ mttāt‘Yttˆt˜ctctâltt : ctt˙it ctīt t˜vtÙtct, ctt˙it ctīt` ǐtt`Ût ctīt` utct˛t˜òt Sct˙ utctītj, stvtt˜Otcttvt ct›tī t˜ctMǐt`utCt ltitt GFtYtt`òtīt
ctīt mt˙lt¸ǐtvtı
n. GlFttovt ctât t˜mtætvlt : GlFttovt Ftīǐtvt, utt˜ltFtīǐt, ct`ī t˜vtÙtct GlFttovt ctīt mt˙lt¸ǐtvt, ǐttitlt ltitt sttitct Ftīǐtvt, GlFttovt mttOtvttW ctīt cttǐÙt t˜vtOtt‘jCtı
3. t˜ctt˜Yt÷t yttpttj oMttsttW ctW ctīt`ctlt ltitt GlFttovt t˜vtOtt‘jCt ǐttitltt`Ftt˜j ctīt`ctltı
4. mt˙lt¸ītvt : mttcttvÙt ct stt˙t˜Mtctī, mittÙtt` Sct˙ stmittÙtt`ı
5. ⭲ttt˜st‘ctâ ctâī*ttCt ctât Øtl*t*t : (utt˜ltt˜‰lt) uttÛtt`vt Sct˙ vtctt`vt ctīǐÙttCt stit‘Mttvt, Ft“j`št` stvt¸cttīǐtltctltt ltitt #tt˜ltFttjctī t˜mtætvlt, GFtYtt`òtīt ctīt stt˜ltj`ctī, sttt˜it‘ctī ctīǐÙttCt Sct˙ utt˜ltmFtOtt‘ı
6. jt°^t`*t ⭲tt*t : utlÙtÙt, stctÙtct ltitt sttctīǐtvt ctīt` t˜ctt˜OtÙtt˙, ct:ǐttt˜mtctīt`Ùt (utt˜ltt˜‰lt) Sct˙ ct`īvõt`Ùt jt`ptittj Sct˙ sttÙt ct`ī t˜mtætvlt, Ftt`itt ltitt cttmltt˜ctctī Mt`ut utYttct, it¸Ctctī Sct˙ lctjlt ctīt` stvltt˜›tīÙtt, cÙttFttj Ût›tī ct`ī t˜mtætvlt (ctt“t˜õctī Sct˙ t˜nct:mt ctīt t˜mtætvlt)
7. ct¸õt ctât t˜mtætvlt : ctīt`ctlt mltj ctW Ftt˜jctlt‘vttW ctīt` cttFt, ct¸õt Fttt˜lt‘ ctīt t˜mtætvlt, ct¸õt it¸Ctctī, ct¸õt ctīt Ftt˜jcttFt t˜mtætvlt, ct¸õt ctīt` ctt˙it ct`ī t˜mtætvlt yÙttpt oj ctīt t˜vtOtt‘jCt stt“j ct›tī t˜ctMǐt`utCt, mFtīt`t˜lt ct`ī t˜mtætvlt ltitt mFtīt`t˜lt t˜vtÙtv$tCt ctīt` vtt`t˜ltÙtt˙ı
8. cttˆt˜õctâ uāt˙ ytQt˜ct˙âit ā*tātmstt : ytQctī ltitt stit‘cÙtctmitt ctW Gvtctīt` Yttt˜ctctīt, ct`īvõt`Ùt ytQctī ltitt ct¸õt yttpttj ctt“t˜õctī utytvOtvt ctīt` ltctīvtt`ctīt`ı
KtC[-Kt
1. jtptt˜ctòt mttct‘ptt˜vtctī cÙtÙt Sct˙ ctījtjt`FtCt ct`ī t˜mtætvlt, ctījct˙Ûtvtt ltitt ctījYttj ctīt mitvttvltjCt, ctītjtjt`FtCt ct`ī utYttct, jtptctīt`utt`Ùt vtt`t˜lt stt“j sttt˜it‘ctī t˜ctctītmt, ytptš ctīt` uttt˜FltÙttW stt“j cÙtÙt ctīt sttt˜it‘ctī ctitt´ctījCt, ytptš Ittš` ct`ī utctītj ltitt stit‘cÙtctmitt Ftj Gvtct`ī utYttctı
n. ⭲tvltjt‘°^t`*t ⭲tst‘MttŒt : stvltjt‘°^t`Ùt cÙttFttj ct`ī t˜mtætvlt, n`ct:Mtj stt`ǐtt`vt t˜mtætvlt, utlÙttFt‘Ct ct›tī (sttFtījctīct‘) cÙttFttj Mtltˇ cÙttFttj Sct˙ t˜ctctītmt, Yt¸itlttvt mt˙lt¸ǐtvt, Yt¸itlttvt mt˙lt¸ǐtvt ctW stmt˙lt¸ǐtvt ltitt stmt˙lt¸ǐtvt ctīt` 9t`ctī ctījvt` ctīt` vtt`t˜ltÙtt˙, t˜mitj Sct˙ stt˜mitj t˜ctt˜vtÙtct ojW, mctlt˙$t cÙttFttj ytvttct mt˙j#tCt t˜cto`Mtt` $tīCt Sct˙ $tīCt utytvOtvt, stvltjt‘°^t`Ùt ctt“t˜õctī Sct˙ cÙttFttt˜jctī mt˙mittÙtWı
3. mt˙ct˛t˜æ Sct˙ t˜ctctītmt, sttt˜it‘ctī t˜ctctītmt ct`ī cttFt, sttt˜it‘ctī mt˙ct˛t˜æ ct`ī t˜mtætvlt, utt˜ltt˜‰lt cttct:mt‘ Sct˙ n“j[, [t`ctj ctt˘[ǐt, ßtct stt˜ltj`ctī Sct˙ FttpttR t˜vtctt‘Ct ct`ī mltj cttvtct FttpttR t˜vtctt‘Ct ctīt` mtctmÙttı
⭲tst‘MttŒt : t˜Éltt`*t-ØtMvt-Ftīt
1. Yttjltt`*t ⭲tst‘ā*tātmstt ctât` Øtct¸Kt t˜ātMt`<tltt*tW : jt°^t`Ùt sttÙt ct utt˜lt cÙtt˜òtī sttÙt ctīt` utct˛t˜òtÙtt˘, jt°^t`Ùt sttÙt ctīt` mt˙jÛtvtt ctW Ftt˜jctlt‘vt, ptvtmt˙KÙtt ct˛t˜æ Sct˙ sttt˜it‘ctī t˜ctctītmt, Yttjltt`Ùt ptvtmt˙KÙtt ctīt` t˜ctMt`utlttS˙ cÙttctmttt˜Ùtctī mt˙jÛtvtt ctW Ftt˜jctlt‘vt, Gett`it Sct˙ ct˛īt˜ut #t`$ttW ctW stctmittFtvtt ctīt t˜ctctītmt, vptt‘ ct`ī œtt`lt: FttjcFtt˜jctī Sct˙ it“j FttjcFtt˜jctī, FtÙtt‘ctjCt utotutCt Sct˙ Gvtctīt t˜vtÙt˙$tCtı
n. Yttjltt`*t ct˛ât˜<t : Yttjltt`Ùt stit‘cÙtctmitt ctW ct˛īt˜ut ctīt ctnlct, ct˛īt˜ut ctW mt˙ct˛t˜æ ct`ī œtt`lt, Yttjltt`Ùt ct˛īt˜ut ctW mt˙mittitlt Ftt˜jctlt‘vt, Yttt˜ct mt¸Ottj ct MttKt sttFttt˜lt‘ ctīt` t˜ctMt`ut mt˙oYt‘ ctW, Yttjltt`Ùt ct˛īt˜ut ǐttitlt ct ctīt`ctlt t˜vtOtt‘jCtı
3. Yttjltt`*t ⭲ttˆÅtt`t˜itctâ mt˙āt˛t˜æ uāt˙ mt˙jÛtvtt : Yttjlt ctW mttct‘ptt˜vtctī #t`$t, t˜vtptt` ctītjFtt`j`š #t`$t, ǐtIt¸ Sct˙ ct¸īšt`j Gett`it, stt“ett`t˜itctī vtt`t˜lt utmlttct, utt˜ltmFtOtt‘ ltitt stt“ett`t˜itctī t˜ctctītmt, t˜cto`Mtt`, Ftt˙ptt` utt“ett`t˜itctī ltitt Yttjltt`Ùt Gett`ittW ctīt t˜ctctītmt, Yttjlt ctW stt“ett`t˜itctī viCtltt, Yttjlt ctW ßtct vtt`t˜lt mt¸Ottjı
4. Yttjlt ctW ytūtštW ctât` Øtāt˛t˜òt ltstt jtūtctât`<tt`*t vtt`t˜lt : ct`īvõt`Ùt ct Gòtj uto`Mt mtjctītj ct`ī mttct‘ptt˜vtctī sttitct ct cÙtÙt ct`ī utct¸Kt œtt`lt, ct`īvõ mtjctītj ct`ī it“j Ùtt`ptvtt cÙtÙt, ct`īvõ mtjctītj ct`ī sttvltt˜jctī Sct˙ ctt¢t $tīCt, ct`īvõ mtjctītj ctīt` ytptš ctW jtptctīt`ut Sct˙ sttitct Ittš`ı omtctW t˜ctòt sttÙtt`it ctīt` mt˙mlt¸t˜ltÙtt˙ı
5. ct¸õt uāt˙ ytˆt˜ct˙âit : Yttjlt ctW ctt“t˜õctī mt˙mittS˙, Yttjltt`Ùt t˜jptct‘ ytQctī, cttt˜Ctt˜pÙtctī ytQctī, t˜ctMt`ut t˜ctòtt`Ùt mt˙mittS˙ (yt“t˜ct˙īit ct it“j yt“t˜ct˙īit) t˜jptct‘ ct¸õt ct`ī œtt`lt, ct¸õt it¸Ctctī Yttjlt ctW ctt“t˜õctī vtt`t˜lt ct`ī Gö`MÙt Sct˙ t˜ctt˜OtÙtt˙ ltitt Gmtctīt` mtt`cttS˙ı
6. ⭲tvltjt‘°^t`*t ā*ttFttj ltstt Yt¸itlttvt mt˙lt¸ītvt : Yttjlt ctīt t˜cto`Mtt` cÙttFttj, ctt$tt mt˙jÛtvtt ltitt t˜oMtt, cÙttFttj vtt`t˜lt: sttÙttlt utt˜ltmittFtvt, t˜vtÙtt‘xx xxx`lmttnvt Sct˙ sttlctt˜vtYt‘jltt, sttÙttlt Gotjt`ctījCt ltitt Yt¸itlttvt mt˙lt¸ǐtvt Ftj Gmtctīt utYttct, t˜cto`Mtt` $tīCt ltitt Gmtctīt Yttj ®FtÙt` ctīt` t˜ctt˜vtÙtct oj stctcttǐÙtvt ltitt Gmtctīt Yt¸itlttvt, mt˙lt¸ǐtvt Ftj utYttct, ®FtÙt` ctīt` Ftt˜jctlt‘vtt`Ùtltt, Yttjltt`Ùt stit‘cÙtctmitt ctīt t˜ctÕt stit‘cÙtctmitt mt` Sctīt`ctījCt Sct˙ t˜ctÕt cÙttFttj mt˙it9vtı
7. Yttjlt ctW ⭲ttt˜st‘ctâ t˜vt*tt`ūtvt : Yttjlt ctW sttt˜it‘ctī t˜vtÙtt`ptvt ctīt` Yttt˜ctctīt, sttt˜it‘ctī sttÙtt`ptvt ct`ī Gö`MÙt,yt`jt`ptittjt`, sttt˜it‘ctī itjt`ytt` ltitt #t`$tt`Ùt stmt˙lt¸ǐtvt ctīt` mtctmÙttÙtW, 1951 mt` Yttjltt`Ùt sttt˜it‘ctī t˜vtÙtt``ptvt ctīt` mt˙t˜#tFlt mtctt`#tt, Yttjlt ctW t˜vtÙtt`ptvt ctīt` jCtvtt`t˜lt ltitt FmtctW ntǐt ctW n¸Ùt` Ftt˜jctlt‘vt, Ft˙Ûtctutt´Ùt Ùtt`ptvtt ct`ī t˜ctòtt`Ùt mt˙mttOtvt, stt9cttR Ft˙Ûtctutt´Ùt Ùtt`ptvtt ct`ī Gö`MÙt ltitt GFtǐtt˜yOtÙtt˙, vtcttR Ft˙Ûtctutt´Ùt Ùtt`ptvtt ctīt` utmlttt˜ctlt jCtvtt`t˜ltı
8. mtcttūtMttŒt : Øtstct ØtMvt-Ftīt mttcttv*t mtcttūtMttŒt (KtC[-⭲t)
1. mttcttt˜ūtctâ ‹tšvtt⭲ttW ctât ⭲tO*t*tvt uāt˙ mtcttūtMttŒt ct`â ct˛ītYt˛lt ⭲ttOttj : mtcttptMttvt ctīt Go˛Ytct Fmtctīt` utct˛īt˜lt ltitt stOÙtÙtvt #t`$tı stOÙtÙtvt t˜ctt˜Ot: ctmlt¸t˜vt‰ltt ctīt` mtctmÙtt Sct˙ mttcttt˜ptctī t˜ctzttvttW ctW cttFtvt mtcytvOtt` t˜ctÛttj t˜vtoˇMtvt, Mtt`Ot uttvFt-ctCt‘vttlctctī, stvct`utCttlctctī (itct`utCttlctctī) ltitt utÙtt`ittlctctī ltiÙttW ct`ī mt˙ctīǐtvt ctīt` uttt˜ctt˜OtÙtt˙-stctǐtt`ctīvt mtt#ttlctītj stvt¸mttÛtt` Sct˙ utMvttctǐtt`ı
n. mtˆætt˜vltctâ Ftt˜jØt`#*t : utctītÙt‘ctto: j`[t˜ct:ǐtFt yt,tGvt, ct“t˜ǐtvttmctīt` stt“j cttš‘vtı mt˙Itut‘ t˜mtætvlt: ctītǐt‘cttct:mt‘, jtǐFtī [`nj`vt [tFt‘ī stt“j ǐt`t˜ctmt ctīt`ptjıutt˜ltctītlctctī stvlt: t˜›tīÙttcttmt: mtt`. Svt. cttīǐt`, ptt`. SÛt. ctt`[,stt“j nyt‘š‘ yǐttctjı mt˙jÛtvtt ātto : ǐt`ctt`mštmt, Smt. S.Ftī vt`[`ǐt, Fttmt‘vmt Sct˙ ctš‘vt`ı
3. mtcttūtMttŒt ct`â ⭲tntCtt` t˜ātÛttjctâ : stitmlt ctītWlt-utlÙt#tctto Sct˙ t˜ctzttvttW ctīt mt˙mltjCtı njytš‘ mFtWmtj-mttctÙtctt` vuctt Sct˙ Go˛t˜ctctītmt ctīt t˜mtætvltı ctītǐt‘ cttct:mt‘-Évotlctctī Ytt“t˜ltctīctto Sct˙ t˜ctjmtvt (ct“jtiÙt) FcttF‘ǐt o¸jKtt`ct-ßtctt˜ctYttptvt, Otct‘ ctīt mtcttptMttvtı ct“ct:mtct`ytj- mttcttt˜ptctī t˜›tīÙtt Sct˙ sttoMt‘ uttvFtı
4. mttcttt˜ūtctâ mltjt`ctâjCt uāt˙ t˜ātYt`ot`ctâjCt : stctOttjCtt, mltjt`ctījCt ct`ī t˜mtætvlt-cttct:mt‘, ct`ytj, [`t˜ctmt Sct˙ cttj, utctītj-pttt˜lt Sct˙ ctit‘ utt˜mitt˜lt Sct˙ Yttt˜ctctīt, mttcttt˜ptctī itt˜ltMtt`ǐtltt utctītj, cÙtctmttt˜Ùtctī itt˜ltMtt`ǐtltt-stvlt: Ftt.`{t`itlt ltitt stvltjFtt`.{t`itltı
(KtC[-yt)
5. t˜ātāttn, Ftt˜jāttj ltstt vttlt`otjt` : t˜ctcttn ct`ī utctītj Sct˙ mctvFt, mttcttt˜ptctī t˜ctOttvttW ctīt utYttct, Ftt˜jcttj-mt˙jÛtvtt Sct˙ utctītÙt‘, Ftt˜jcttj ct`ī ytoǐtlt` utt˜ltcttvt, Ftt˜jcttj mtòtt Sct˙ vttlt`otjt`, mtctctītǐtt`vt mtcttpt ctW t˜ctcttn Sct˙ t˜ǐt˙itYt`o ctīt` Yttt˜ctctītı
6. mttcttt˜ūtctâ Ftt˜jātlt‘vt uāt˙ t˜ātctâtmt : stctOttjCtt, mttcttt˜ptctī Ftt˜jctlt‘vt ct`ī ctītjctī Sct˙ t˜mtætvlt, mttcttt˜ptctī sttvot`ǐtvt Sct˙ Ftt˜jctlt‘vt, mttcttt˜ptctī vtt`t˜lt Sct˙ t˜ctctītmt ctW jtpÙt ctīt nmlt#t`Ft, «ttctt`Ct ®FttvltjCt ctīt` jCtvtt`t˜ltÙtt˙ mttct¸xxx˜Ùtctī t˜ctctītmt ctītÙt‘›tīct, mtctt˜vctlt «ttctt`Ct t˜ctctītmt ctītÙt‘›tīct, «ttctt`Ct Ùt¸cttsttW n`lt¸ mctÙt˙ jt`ptittj ltitt ptcttnj jt`ptittj Ùtt`ptvttı
7. ⭲ttt˜st‘ctâ uāt˙ jtūtvtˆt˜ltctâ ā*tātmstt : mt˙Ftt˜òt ctīt` stctOttjCtt: ßtctt˜ctYttptvt ct`ī mttcttt˜ptctī sttÙttct, t˜ctt˜vtÙtct ct`ī utctītj, stt“ett`itt`ctījCt, vtitjt`ctījCt Sct˙ mttcttt˜ptctī t˜ctctītmt Mtt˜òtī ctīt` utct˛īt˜lt-ct“Ùtt˜òtīctī, mttct¸xxx˜Ùtctī stt˜Ytptt`vct¸Kt, ctit‘itlt, jtptvt“t˜ltctī mtnYttt˜itltt ct`ī mct®Ft- ptvtltt˙t˜$tctī Sct˙ t˜vtj˙ct¸īMtı
8. Otct‘, t˜āt%ttvt uāt˙ ØttˆÅtt`t˜itctât` : stctOttjCtt, Ftj˙Ftjtitlt Sct˙ sttOt¸t˜vtctī mtcttpttW ctW Ottt˜ct‘ctī t˜ctÕttmt Sct˙ Ottt˜ct‘ctī Yttt˜ctctītS˙, t˜ctzttvt ctīt sttOttj, t˜ctzttvt ctīt mttcttt˜ptctī Gòtjott˜Ùtlct Sct˙ t˜vtÙt˙$tCt, t˜ctzttvt Sct˙ utt“ett`t˜itctīt` ct`ī mttcttt˜ptctī Ftt˜jCttctı
9. ūtvtmt˙K*tt uāt˙ mtcttūt : ptvtmt˙KÙtt ctīt sttctītj, utct˛t˜òtÙttB, jÛtvtt t˜vtu›tīctCt, ct˛t˜æ , Yttjlt ctW ptvtmt˙KÙtt ctīt` mtctmÙttS˙, ptvtmt˙KÙtt t˜Mt#ttı
mtcttūtMttŒt : t˜Éltt`*t ØtMvt-Ftīt : Yttjltt`*t mttcttt˜ūtctâ ā*tātmstt
1. Yttjltt`*t mtcttūt ct`â ⭲ttOttj : Ftj˙Ftjtitlt Yttjltt`Ùt mttcttt˜ptctī mt˙it9vt-Otct‘, ctīct‘ ctīt t˜mtætvlt, sttßtct cÙtctmitt, Ft¸®uttit‘ Sct˙ mt˙mctītjı mttcttt˜ptctī mtt˙mct˛īt˜ltctī itlÙttlctctīltt-ytt“æ , Fmǐttct ltitt Ftt˜§tct ctīt utYttct, t˜vtj˙ltjltt ltitt Ftt˜jctlt‘vt ct`ī GòtjotÙtt` ctītjctīı
n. mttcttt˜ūtctâ mltjt`ctâjCt : pttt˜lt cÙtctmitt-GlFtt˜òt mtt˙mct˛īt˜ltctī mt˙jÛtvttlctctī Ât˜° , pttt˜lt ct`ī ytoǐtlt` utt˜ltcttvt, pttt˜lt Sct˙ ctit‘, mtcttvtltt ltitt mttcttt˜ptctī vÙttÙt mt˙yt˙Xxx` t˜ctÛttj, Yttjlt ctW ctit‘ mt˙jÛtvtt-ct˛īutctī Sct˙ stt“ett`t˜itctī, ctOÙtct ctit‘ ctīt GoÙt, ptvtpttt˜ltÙttW ctW ctit‘, ot˜ǐtlt Ût`ltvtt ctīt Go˛Ytctı
3. t˜ātāttn, Ftt˜jāttj uāt˙ vttlt`otjt` : t˜ctt˜Yt÷t mctīt`ct mtcttntW ctW t˜ctcttn, Fmtctīt` ytoǐtltt` utct˛t˜òtÙtt˙ Sct˙ Ytt˜ctuÙt, Ftt˜jcttj-mt˙jÛCtvotntltcintcutīedS.c.t.˙.
utctītÙtt‘lctctī Ftnǐtt ytoǐtlt` utt˜ltcttvt, t˜ctcttn Sct˙ Ftt˜jcttj Ftj mttcttt˜ptctī, sttt˜it‘ctī, Ftt˜jctlt‘vttW Sct˙ vttlt`otjt` cÙtctmitt ctW #t`$tt`Ùt stvltj Sct˙ Gmtctīt ⭲tt˜YtØt`jCt : stt˜Ytut`t˜jlt cÙtctntjtW ct`ī cttvto˙[, sttctMÙtctīltt, stvltvttW, Go˛ot`ǐtvt, utǐtt`Ytvt ct`ī mt˙utlÙtÙt, stt˜Ytut`jCtt ctīt cttFtvt, ytt˜njmit ytvttct
Ftt˜jctt˜ltlt mctvFtı
stvltmit stt˜Ytut`jCtt, stt˜Otitlt stt˜Ytut`jCttı 10. ā*tātntj ctât` GlFtt˜òt ltstt t˜ātctâtmt: utptvtvttlctctī sttOttj, FtÙtt‘ctjCtt`Ùt ctītjctī yttǐtFtt`utCt,
4. ⭲ttt˜st‘ctâ uāt˙ jtūtvtˆt˜ltctâ ā*tātmstt : ptptcttvtt` cÙtctmitt, Yttmcttt˜ctlct cÙtctmitt, Yttt˜ctmt¸Ottj Sct˙ Gotjt`ctījCt ct`ī mttcttt˜ptctī Ftt˜jCttct, ct˙Ûtvt, mtt˙mct˛īt˜ltctī ctītjctī, mt˙ct`ot` ctÛtvt, Ft`Mtt`Ùt ltitt ctīt“Mtǐt t˜ctctītmt, Yttutt t˜ctctītmtı 11. ctvtt`ātˆ%ttt˜vtctâ Øtctât*ttW ctW ātˆ*tt˜òtâctâ t˜ātt˜Yt÷tt*tW, sttt˜it‘ctī t˜ctctītmt ct`ī mttcttt˜ptctī t˜vtOtt‘jctī, nt˜jlt ›tītt˜vlt, ptvtltt˙t˜$tctī cÙtctmitt ctīt ctīÙtt‘lctctī mctvFt, jtptvt“t˜ltctī oǐt Sct˙ Gvtctīt` jÛtvtt, mttcttvÙt cttvtt˜mtctī Ùtt`iÙtltt: mct®Ft ltitt mt“ætt˜vltctī GFttitct-t˜mFtjct“vt, itmt‘švt, t˜itǐtFtī[‘, pt`vmtvt ltitt t˜FtÙttpt`, mt˛ptvtMtt`ǐtltt ltitt jÛtvttlctctīltt jtptvt“t˜ltctī stt˜YtptvttW ctīt` mt˙jÛtvtt, Ftt˜jctlt‘vt Sct˙ Gvct¸Ktltt Mtt˜òtī ctīt t˜ctct`īvõt`ctījCt Sct˙ jtptvt“t˜ltctī mtnYttt˜itltt, t˜ctctītmt ctW jtptvt“t˜ltctī utYttctı t˜Ûtvltvt, yt¸t˜æ ctīt` stvt¸ctt˙t˜Mtctīlttı
5. t˜Mt#tt ⭲ttˆj mtcttūt : Ftj˙Ftjtcttot` Sct˙ sttOt¸t˜vtctī mtcttpt ctW t˜Mt#tt ct`ī sttÙttct, Mt“#tt˜Ctctī stmtcttvtltt Sct˙ Ftt˜jctlt‘vt t˜Mt#tt Sct˙ mttcttt˜ptctī itt˜ltMtt`ǐtltt, mtcttpt ct`ī ctīctptt`j ctittX ctīt` t˜Mt#tt ctīt` mtctmÙttÙtWı
ctvtt`t˜āt%ttvt : ØtMvt Ftīt II : ⭲tvt¸Øt*t¸òtâ Ftt˜jØt`#*t ctW ctvtt`t˜āt%ttvt
1. ⭲tvt¸Øt*t¸ctält t˜āt%ttvt ct`â vFt ctW ctvtt`t˜āt%ttvt : stvt¸utÙt¸òtī ytvttct cttǐtYttlt t˜ctzttvt, ctvtt`t˜ctzttvt ct`ī #t`$t-mttcttt˜ptctī, mttct¸xxx˜Ùtctī, stt“ett`t˜itctī,
6. ūtvtūttltt`*t, nttctt`Ct uāt˙ vtitjt`*t mttcttt˜ūtctâ mt˙it9vt : ptvtpttltt`Ùt mtct¸otÙttW ctīt` t˜ctt˜Mt° t˜ctMt`utlttS˙ stt“j Gvtctīt t˜ctltjCt, ptvtpttt˜lt t˜ctettǐtÙtt`, mcttmiÙt ltitt FtÙtt‘ctjCtt`Ùtı n. ātˆ*tt˜ctältctâ t˜Yt÷tltt*tW uāt˙ cttFtvt : cÙtt˜òtīitlt t˜Yt÷tlttsttW ctīt mct®Ft œtt`lt, ctvtt`ct“zttt˜vtctī
Sct˙ pttt˜lt, Ftt˜jmt˙mct˛īt˜ltctījCt, mtjǐtt`ctījCt Sct˙ Sctīt`ctījCt ctīt` utt˜›tīÙttS, ptvtpttt˜ltÙttW ctīt` mttctcttt˜ptctī mtctmÙttS˙ stt“j stt˜mctlttı «ttctt`Ct cttFtvtt`ctījCt Ftjt`#tCt t˜vtctt‘Ct Sct˙ cttvtctīt`ctījCt, t˜ctMctmtvtt`Ùtltt Sct˙ ct“Otltt, cttvtctī ›tīt˘mt ct“Xxx`ctījCt, Ftjt`#tCt ctW mtt˙mct˛īt˜ltctī ctītjctīı 3. mtct¸otÙt ct`ī mttcttt˜ptctī-mtt˙mct˛īt˜ltctī sttÙttct, FtjcFtjtcttot` Mtt˜òtī mt˙jÛtvtt, ptvtlt˙$tt`ctījCt Sct˙ vt`lt˛lct, mttct¸xxx˜Ùtctī t˜ctctītmt ctītÙt‘›tīct Sct˙ ā*tt˜ctältlāt ct˛ī*tt˙ctâvt : cÙtt˜òtīlct cttǐÙtt˙ctīvt ct`ī t˜ctctto, sttlct stt˜Ytǐt`Kt cttFt, ut#t`Ft ltctīvtt`ctī, stvt¸t˜›tīÙtt Mt“ǐtt` ltitt stvt¸t˜›tīÙtt stt˜Ytvtt˜ltÙtt˙, Ft˙ÛttÙtltt`jtpt, «ttctt`Ct ®FttvltjCt ctīt` vtctt`vt jCtvtt`t˜ltÙtt˙ı vtitjt`Ùt mtct¸otÙttW ctW FtjcFtjtitlt mt˙mittsttW ctīt` t˜vtj˙ltjltt Sct˙ Ftt˜jctlt‘vt (vttlt`otjt`, št`. S. št`., jt`Mttct‘ī ltitt Sct. mtt`. sttF‘., pt“mt` ctnlctFttCt‘ cttFtctītW ct`ī t˜ctt˜ctOt Ft#ttW ctīt t˜vt®FtCtı 4. ctvtt`ātˆ%ttt˜vtctâ t˜ātct˛ât˜lt*tt˙ uāt˙ cttvtt˜mtctâ pttt˜lt, cÙtctmttÙt sttt˜o) vtitjt`Ùt mtct¸otÙt ctW ctit‘ mt˙jÛtvtt Sct˙ itt˜ltMtt`ǐtltt, jòtīt`Ùt t˜ctt˜ctOtltt Sct˙ mttct¸xxx˜Ùtctī Sctīt`ctījCt, vtitjt`Ùt Ft.[t`mt, «ttctt`Ct māttms*t : cttvtt˜mtctī t˜ctct˛īt˜ltÙtt˙` ctīt ctitt´ctījCt ([t.` Smt. Sct. Ûtlt¸it‘) ctvtt`mvttÙt¸t˜ctctī, ctvtt`t˜ctFtǐtvt Sct˙ ctvtt`o“t˜nctī t˜ctct˛īt˜ltÙttW ct`ī ǐt#tCt Sct˙ Gvtctīt`
vtitjt`-t˜Yt÷tltt, ptvttvtctīt`Ùt Sct˙ mttcttt˜ptctī mtt˙mct˛īt˜ltctī utÛtǐtvtı
GlFtt˜òt, utt˜ltytǐt, ctīt`t˜Ft˙it Sct˙ cttvtt˜mtctī mcttmiÙtı 5. ⭲tt˜Ytāt˛t˜òt ltstt mttcttt˜ūtctâ mt˙%ttvt : stt˜Ytct˛t˜òtÙttW ctīt mct®Ft ltitt Gvtct`ī t˜mtætvlt,
7. Otct‘ ⭲ttˆj mtcttūt : t˜ctt˜Yt÷t Ottt˜ct‘ctī mtcttntW ctīt sttctītj, ct˛t˜æ stt“j #t`$tt`Ùt t˜ctltjCt, stvltj Ottt˜ct‘ctī stvlt: t˜›tīÙttS˙ stt“j Gmtctīt` stt˜YtcÙtt˜òtīı stvltct‘Ùtt˜òtīctī sttctīut‘Ct Sct˙ mtntÙtlttFtjctī cÙtctntj, mttcttt˜ptctī mt˙zttvt ctīt mct®Ft, utlÙt#tt`ctījCt ctW mttcttt˜ptctī Sct˙ mtt˙mct˛īt˜ltctī ctītjctī,
Otct‘ Ftt˜jctlt‘vt, mttcutott˜Ùtctī ltvttct, Otct‘ t˜vtjFt`#tctto, stǐFtmt˙KÙtctī Fto ltitt Ottt˜ct‘ctī ®t˜.{cttt˜oltt ctīt` mtctmÙttÙtWı
Fttctt‘«tn ®t˜.{Ùt¸t˜òtīÙtt˙ ltitt mttcttt˜ptctī mtcttn Évoı 6. mttcttt˜ūtctâ ØtYttāt : utYttct, t˜vtÙt˙$tCt ltitt Mtt˜òtī, utYttct ct`ī sttOttj, mttcttt˜ptctī
8. ūtvtmt˙K*tt ctât` itl*ttlctctâltt : t˜ǐt˙it, sttÙt¸ ct“cttt˜nctī t˜mitt˜lt, utptvtvtltt Sct˙ ct˛lÙt¸ ct`ī mttcttt˜ptctī mtt˙mct˛īt˜ltctī Ft#t, ptvtmt˙KÙtt t˜ctmFtīt`š ctīt` mt¸ctījt`ctījCt mtcttntW ct`ī vt`lt˛lct t˜vtuFttovt ctW mtcttn mtcytvOtt` ctītjctīı 7. GÅtt`ittW uāt˙ mt˙it9vttW ctW ctvtt`t˜āt%ttvt : ctīct‘Ûttjt` ÛtÙtvt, mt˙ct˛īlÙt mtcytvOtt` mtctmÙtt, mttcttt˜ptctī ctvtt`ct“zttt˜vtctī mtt˙mct˛īt˜ltctī Sct˙ sttt˜it‘ctīı ptvttvtctīt`Ùt vtt`t˜lt Sct˙ Ftt˜jcttj ctīǐÙttCt ctītÙt‘›tīct, ptvtmt˙KÙtt ct˛t˜æ ct`ī t˜vtOtt‘jctī stt˜Ytct˛t˜òtÙttW Sct˙ cÙtctntj, mt˙it9vttW ctW stt˜Ytut`jCttlctctī mt˙®Ft, mt˙it9vttlctctī utt˜ltcttvt, mt˙it9vttlctctī mt˙ut`utCt, mt˙it9vttlctctī utYttctt`lFttoctīlttı 8.
ltlct Sct˙ Ftt˜jCttctı
Mtˆ#tt˜Ctctâ Ftt˜jØt`#*t ctW ctvtt`t˜āt%ttvt : t˜ctettǐtÙt Sctī mttcttt˜ptctī cÙtctmitt ct`ī ®Ft ctW, t˜ctettǐtÙt mttcttt˜ptctīt`ctījCt ct`ī stt˜Ytctīltt‘ ct`ī ®Ft ctW,
9. vttjt` ⭲ttˆj mtcttūt : vttjt` ctīt ptvtmt˙KÙttlctctī t˜ctctjCt, Gvtctīt` utt˜mitt˜lt ctW Ftt˜jctlt‘vt, t˜ctt˜Mt° mtctmÙttÙtW-on`pt stlÙttÛttj, Yt`oYttct, vttjt` t˜ctettǐtt`Ùt ytÛÛttW ctīt` stt˜Otitct, stt˜Ytut`jCtt ltitt mt˙ct`t˜itctī mtctmÙttS˙, Mt“#tt˜Ctctī GFtǐtt˜yOt ctīt` utYttt˜ctlt ctījvt` cttǐt` ctītjctī, Mt“#tt˜Ctctī t˜vtuFttovt
Sct˙ ytÛÛttW ct`ī ctīǐÙttCt mt˙yt˙Xxx` ctītÙt‘›tīctı
ctW mt¸Ottj n`lt¸ nmlt#t`Ftı 9. vtˆott˜vtctâ Ftt˜jØt`#*t ctW ctvtt`t˜āt%ttvt : ctvtt`t˜Ûtt˜ctīlmtt: mct®Ft Sct˙ ǐt#Ùt, ctvtt`t˜ctMǐt`utCttlctctī mt`cttitt´ ct`īvõt`Ùt mtcttn
10. Ftt˜jātlt‘vt uāt˙ t˜ātctâtmt ct`â ⭲tt*ttct : mttcttt˜ptctī Ftt˜jctlt‘vt Sct˙ sttOt¸t˜vtctīt`ctījCt, mttÛtctī stctjt`Ot, Sct˙ mctctītt˜jctī utct˛t˜òt, mttcttt˜ptctī ltitt cÙtctntj ctvtt`t˜Ûtt˜ctīlmttS˙, mttct¸xxx˜Ùtctī cttvtt˜mtctī mcttmiÙt, ctvtt`t˜Ûtt˜ctīlmtt ct`ī vt“t˜ltctī t˜ctcttoı 10. Ft*tt‘ātjCtt`*t ctvtt`t˜āt%ttvt : cÙtctntj ctW Ftt˜jctlt‘vt ct`ī œtt`lt-sttvltt˜jctī Sct˙ cttåÙtı mttcttt˜ptctī Ftt˜jctlt‘vt ctīt` utt˜ctīÙttS˙-mt˙mct˛īt˜ltctījCt Sct˙ Ftt˜§tctt`ctījCt Sct˙ sttOt¸t˜vtctīt`ctījCtıFtt˜jctlt‘vt ct`ī FtÙtt‘ctjCt ctīt` Yttt˜ctctīt, FtÙtt‘ctjCt Ftj cttvtctt`Ùt utYttct, cÙtt˜òtīitlt mittvt, Octt˜vt utotutCt ltitt Ytt`.[-Ytt.[ ctīt utYttctı
ut`jctī-ptvtmt˙Ûttj, t˜Mt#tt Sct˙ mtcut`utCt, sttOt¸t˜vtctīt`ctījCt Sct˙ t˜vtÙtt`t˜ptlt Ftt˜jctlt‘vt ctīt` mtctmÙttÙtWı t˜vtÙtt`ptvt ctīt` ct“Ûttt˜jctīt` Sct˙ jCtvtt`t˜lt, Ft˙Ûtctutt´Ùt Ùtt`ptvttS˙, itjt`ytt` Gvcttǐtvt ct`ī ctītÙt‘›tīct, FtÙtt‘ctjCt, yt`ctītjt` stt“j vtitjt`Ùt t˜ctctītmt ct`ī ctītÙt‘›tīct, mttcttt˜ptctī mt¸Ottj sttvot`ǐtvt, ct˛īutctī,
1n. ātvtmFtt˜lt t˜āt%ttvt : Øtstct ØtMvt-Ftīt
mt˛#ct ūtt`āt t˜āt%ttvt, jt`it t˜āt%ttvt, FttoFt t˜ātt˜ātOtltt ltstt ⭲ttct˛ât˜lt ūtvtvt
t˜FtÚ.[t ctit‘, ctt˜nǐtt ltitt ot˜ǐtlt ct`ī t˜ctMt`ut mt˙oYt‘ ctWı 1. mt˛#ctūtt`ātt` t˜āt%ttvt : mtt#ctptt`ct t˜ctt˜ctOtltt, cttÙt¸ ptǐt ltitt ct˛ot mtt#ct t˜ctzttvt ctīt uttj˙t˜Ytctī zttvt, mtt#ctptt`ct mt˙›tīctCt ltitt jt`Ot #tctltt t˜ctzttvt
9. oMt‘vtMttŒt :Øtstct ØtMvt-Ftīt: oMt‘vtMttŒt ctât Ft˜ltntmt uāt˙ mtctm*tt*tW (KtC[-⭲t)
ctīt mttcttvÙt t˜ctctjCt, ct˛īt˜ut, Gett`it, stt“utt˜Ot ltitt FtÙtt‘ctjCt ct`ī t˜ctMt`ut mt˙oYt‘ ctW mtt#ctptt`ct t˜ctzttvt ct`ī stvt¸utÙtt`itı n. FttoFt jt`it t˜āt%ttvt :
t˜ctuttCt¸, ptt`cttCt¸, ctīctctī utocÙt, ctīctctī ltitt itt`ǐtct˛īt˜ct Étjt GlFt÷t ctnlctFttCt‘ FttoFt jt`it: ›tī¸mtt`Ftīmt‘ ctīt ®š vttš, ltcyttcttī ctīt ctt`pt“ctī, FtFtt`lt`
1.Fīt`štW : utlÙtÙt-t˜mtætvlt, n. ⭲tjmlt˛ : sttctītj, õcÙt, ctītjCtltt, 3: [`ctâtš‘ : Ftæt˜lt, sttlctt, F‘Mctj , ctvt-Mtjt`j É“ltctto, 4. t˜mFtvtt`ūtt : ctīt` Ftt˜òtÙttW ctīt ctīǐt‘, t˜mtš^mt ctQīctīj, Ottvt ctīt FtCt‘ st˙itcttjt`, it`nBt ctīt ctīt`š, ptt“ ctīt ctīC[, sttǐtt ctīt t˜FtÚ“ltt` st˙itcttjt`, it÷t` ctīt ǐttǐt t˜ctitǐtvt, õcÙt, it¸Ct stt“j FtÙtt‘Ùt mtctˇÕtjctto, 5. īttFytt˜vtlmt : t˜ÛtoCt¸, F‘Õtj, 6. ītt˘ctâ : zttvt t˜mtætvlt, ptvctpttlt utlÙtÙttW ctīt KtC[vt, õcÙt Sct˙ it¸Ct, stjnj ctīt` cǐttt˜vt ct`ī t˜ctMt`ut mt˙oYt‘ ctW, mt˙›tīctCt ctīt` t˜ctt˜OtÙtt˙, t˜vtjt`Ot ct`ī GFttÙt stt“x x˜vtÙt˙$tCt, pt“t˜ctctī t˜vtÙt˙$tCt, Ftjptt`t˜ctltt ctīt` ctītt˜Ùt‘ctīt`ı3.
7. ytct‘âīt` : ptFõcÙt ctīt KtC[vt, utlÙtÙtctto, 8. å*t˛ct : zttvt-t˜mtætvlt, mt˙MtÙtctto, sttlctt, ctītjCtltt, 9. ctât˙š : uttitvt¸Yttt˜ctctī Sct˙ stvt¸Ytct ptvÙt FttoFt t˜ātt˜ātOtltt : t˜ctuttCt¸ ptt`cttCt¸, Mt“cttǐt ctīctctī, yt,xXxx`FtītFšt, š`t˜j[t`FtītFšt ltitt stvttct˛ltytt`ptt` ptt`cttMct mtt˜nlt ctīt ctitt´ctījCt, mt˙jÛtvtt, zttvt t˜ctMǐt`utCttlctctī Sct˙ mt˙Mǐt`utCttlctctī t˜vtCt‘Ùt, mt˙Mǐt`utCttlctctī uttitvt¸Ytt˜ctctī t˜vtCt‘Ùt ctīt` mtcYttctvtt, o`Mt ctītǐt Sct˙ ctīt`t˜xXxx˙, yt¸t˜æ (jt`ptvt ct`ī utptvtvt, ptt`ctvt Ût›tī ltitt sttt˜it‘ctī ctnlctı pt.[ ltvtt Ftòtt` ytt`pt ctīt` sttctītt˜jctīt`, t˜Éltt`Ùtctī ct˛t˜æ ı Yt,tCt t˜ctzttvt-ǐtIt¸ ytt`pttCt¸Ottvtt`, utlÙtÙt), F‘Õtj stt˜mltlct-mttOtctī Ùt¸t˜òtīÙttW ctīt` sttǐtt`Ûtvtt, 10. n`it`īt : Évotlctctī Ftæt˜lt, t˜vtjFt`#t utlÙtÙtctto, 11. ⭲t. ct˛j : mttcttvÙtitlt ctīt ǐtIt¸ytt`pttCt¸ptvtvt, vtjÙt¸ictctīt`t˜o˛t˜Yto, it¸® ytt`pttCt¸ Ottvtt`, it¸® ytt`pttCt¸ ptvtvt ltitt cttot-Ùt¸ictctīt`o˛t˜Yto t˜vtut`Ûtvt, Yt,tCt ltitt Ytt,CtFtt`ut ctīt t˜ctctītmtı mtctit‘vt, utlÙtÙtctto ctīt KtC[vt, ytjmt`ǐt: ctCt‘vt t˜mtætvlt, stFttCt‘ utltt`ctī, 1n. lttt˜ct‘âctâ FtjcttCt¸ātto : sttCtt˜ctctī ltiÙt, mtjǐt ltct‘īcttct:Ùt, stit‘ ctitt´ctījCt ct`ī t˜mtætvlt, sttct˛ltytt`ptt` ct`ī ctitt´ctījCt ctīt` sttOt¸t˜vtctī Ftæt˜ltÙttB, ctvtmFtt˜ltctī vttctctījCt ct`ī t˜vtÙtct, ptt`ct, ctitt´ctījCt t˜ctzttvt, ctīt t˜Ût$t (t˜ctš˛it`vmtštFvt) t˜mtætvlt, ctīitvt Sct˙ t˜vtoMt‘vt, 13. lttt˜ct‘âctâ Yttātātto : mtlÙttFtvt t˜mtætvlt, ltlctctt`ctt˙mtt ctīt t˜vtjmtvt, stt˜vtcttÙt‘ j“vtvtct¸īǐt`mtt`, ct“«tt`t˜ǐtÙt`mtt`, yt,“t˜mtct`īmtt`, cttǐtct`mtt`, Ft`īyt`mtt`, jt`pt`mtt`, St˜FtÙt`mtt`, ct¸īctījt˜ytš`mtt`, mtt`ǐtvt`mtt`, Smct:ǐtt`t˜FtÙt`[`mtt`, ctytt´vt`mtt`, ǐt“t˜ctvt`mtt`, ltct‘īcttct:ÙttW ctīt YttuttÙtt` t˜mtætvlt, 14. mt˙āt˛t˜òtMttŒt : n¸mt‘ǐt, 15. ⭲tt˜mltlātātto : t˜ctīctˇīitt[‘, mttct‘, 16. ctäāttFvt : sttcttǐt stvt¸ctto, 17. mš^tmtvt Smšj`mtt`, SFtt`mttFvt`mtt`, ÙttFtīt`yttWÙt`mtt`, stctj`vit`mtt`, t˜ǐtt˜ǐtÙt`mtt`, cÙttpt`mtt`, Sjt`ct`īmtt`, Ftt`Sitt`, ltitt stt˘t˜ct‘ī[`mtt`, ct¸īǐttW ct`ī Yt`octītjt` ǐt#tCtı 4.
: cÙtt˜òtī-t˜mtætvltı KtC[-yt ⭲ttct˛ât˜lt ūtvtvt : mtnmtcytvOt, Ot,t¸ ˜ctltt, mtctt˜ctt˜ltlt, FttCt‘Mtt˜òtīltt, vltctīt` Sctct˛ st˙itt` ctīt t˜ctYt`ovt ltitt Ft¸vt®lFttovt, sttct˛īt˜ltptvtctī ctītjctī,
1. Ûttātt‘ctâ : zttvt t˜mtætvlt, Ytt“t˜ltctīctto, n. ūtˆvtoMt‘vt : mtlt˛ ctīt t˜mtætvlt, mÙttÉto ltitt mtFltYt˙itt`vtÙt, ytvOtvt Sct˙ ctt`#t, 3. yttˆæoMt‘vt : ctīt`t˜Mtctīt,vltctī, st˙it ltitt ptt`ctõcÙtctī mt˙ytæ‘vt ctīt` t˜ctt˜OtÙtt˙ stt“j stvt¸utÙtt`itı mtt`cttct:ǐtt`vtǐt t˜ctt˜Yt÷tltt, ctītt˜Ùtctī mt˙ctīj ltitt ctīt`t˜Mtctīt õcÙt utltt`lÙtmtct¸lFtto, #tt˜Ctctīctto, vt“jtlcÙtctto, ytt“æoMt‘vt ct`ī mtcutotÙt, 4. mtt˙K*t : utct˛īt˜lt, Ft¸vut, ctītjCtltt-t˜mtætvlt, ctt`#t, 5. v*tt*tātˆMt`t˜<tctâ mt˙ctījı
: utcttCt, sttlctt, ctt`#t, F‘Õtj ltitt F‘Õtj ct`ī stt˜mltlct ct`ī t˜ǐtÙt` Ùt¸t˜ct:ltÙtt˙ , Ftotit‘, ctītjCtltt, t˜mtætvlt, FtjcttCt¸ctto, 6. ctt`ctt˙mtt : zttvt- t˜mtætvlt utctt, utcttCt, mctlt: utcttCÙtctto, 7. āt`otvlt : Mt˙ctīj, jtcttvt¸pt Sct˙ ctOct (yt,nct, F‘Õtj, sttlctt, ptt`ct, ptitlt, cttÙtt, stt˜ctett, stOÙttmt, ctt`#t)
oMt‘vtMttŒt: t˜Éltt`*t ØtMvt Ftīt: mttcttt˜ūtctâ- jtūtvtˆt˜ltctâ oMt‘vt uāt˙ Otct‘-oMt‘vt KtC[-⭲t
ātvtmFtt˜lt t˜āt%ttvt : t˜Éltt`*t- ØtMvt Ftīt
ctât`t˜Mtctât ūtt`āt t˜āt%ttvt, ⭲ttvt¸āt˙t˜Mtctât` ctâtt˜*t‘ctât`, ūtˆāt jmtt*tvt, Ftt˜jt˜mstt˜ltctât` ltstt ⭲ttt˜st‘ctâ ātvtmFtt˜lt t˜āt%ttvtı
1. ctât`t˜Mtctât ūtt`āt t˜āt%ttvt : ctīt`t˜Mtctīt- ptt`ctvt ctīt` mt˙jÛtvtt Sct˙ ctītÙt‘ ctīt` FctītF‘ ct`ī ®Ft ctW stmtt`ct ct`īvõt`ctīt` ltitt mtmtt`ct ct`īvõt`ctīt` ctīt`t˜MtctītsttW ctīt` stt˜ltmtt#ct mt˙jÛtvtt, Fǐttpctt, t˜Ptǐǐtt`, SC[t`Fǐttt˜pctctī j`t˜šct¸īǐtct, nt˜jlt ǐtctctī, cttFšt`ctīt˘t˜C[^Ùtt jtFytt`mtt`ct, ittǐptt`ctītÙt ltitt ct`īvõctī ctīt` mt˙jÛtvtt Sct˙ ctītÙt‘, ctīt`t˜Mtctīt Ût›tī ctīt t˜ctmlt˛lt stOÙtÙtvt, mt¸$tt` Sctct˛ stæmtt$tt` t˜ctYttptvt it¸Ctmtt$ttW ctW mt˙KÙttlctctī Sctct˛ jÛtvttlctctī Ftt˜jctlt‘vt ltitt
jtūtvtˆt˜ltctâ ⭲ttoMt‘ : mtcttvtltt, vÙttÙt, mctlt˙$tltt, n. mt˙utYt¸ltt: 3. cÙtt˜òtī ltitt jtpÙt 4. ītt`ctâlt˙īt : stctOttjCtt ltitt utctītj 5. mtcttptctto ltitt Gvtct`ī ctīt`t˜Mtctīt t˜ctzttt˜vtctī ltitt sttvt¸ct˙t˜Mtctī utYttctı n. ⭲ttvt¸āt˙t˜Mtctât` : ct`C[`ǐt ct`ī ct˙Mttitt˜lt ct`ī t˜vtÙtct, ptt`vttW ctīt` stvÙtt`vÙt stOttctvt t˜›tīÙtt, cttct:mt‘ctto 6. cttvtctctto, 7. Otct‘t˜vtjFt`#tlttctto, 8. oC[ ct`ī t˜mtætvlt, 9. t˜n˙mtt, stt˜n˙mtt, mtcttˇoÙt, 10. t˜ǐt˙it-mtcttvtltt, 11. ct“zttt˜vtctī Ât˜° Sct˙ utitt˜lt mtnǐtivtltt ltitt ptt`vt t˜ctt˜vtÙtct, ctīctctītW, ptt`cttCt¸sttW stt“x x˜ctuttCt¸sttW ctW sttvt¸ct˙t˜Mtctī Ft¸vtÙttˇptvt, ptt`vt utt˜ltt˜Ût$tCt, t˜ǐt˙it mtnǐtivtltt t˜ǐt˙it t˜vtOtt‘jCt
1n. Fttt˜jt˜mitt˜ltctīt`-oMt‘vtı
KtC[-yt
ctīt`t˜Mtctīt õcÙtt`Ùt ct˙Mttitlt, Fttǐptctt`[mt stvt¸ctt˙t˜Mtctīt` ltitt ptt`vt ctīt` mt˙ctīǐFtvtt ctīt t˜ctctītmt sttvt¸ct˙t˜Mtctī ctīt`[ı ⭲ttCtt˜ātctâ ⭲ttvt¸āt˙t˜Mtctât` : [t`. Svt. S. sttvt¸ct˙t˜Mtctī Ftotit‘ ct`ī ®Ft ctW, [t.` Svt. S. ctīt` mt˙jÛtvtt ltitt utt˜ltct˛īt˜lt, utt`št`vt mt˙Mǐt`utCt ctW vÙttct:ǐtt`t˜Ùtctī stcǐttW ctīt ctītÙt‘Yttj (š^tvmtt˜›tīFMtvt
1. Otct‘, Otct‘Mttvt ltitt Otct‘ oMt‘vt, n. Otct‘ ltitt vt“t˜ltctīltt, 3. F‘Mctj t˜ctutÙtctī stctOttjCttÙtW: ct“Ùtt˜òtīctī, stct“Ùtt˜òtīctī, utct˛īt˜ltcttot`, 4. F‘Õtj ct`ī ltitt š^tvmtǐt`Mtvt) stt“j ptt`vt stt˜YtcÙtt˜òtī ctīt t˜ctt˜vtÙtctvt, GlFtt˜jctlt‘vt stt“x x˜ctctītmt, [t`. Svt. S. t˜ctct˛īlt Sctct˛ mt¸Ottj ptt`vt utctOt‘vt, ptt`vt Ft¸vt‘t˜ctvÙttmt stt˜mltlct ct`ī t˜ǐtS utcttCt, 5. sttlctt ctīt` stctjltt, 6. ctt`#t, 7. Ottt˜ct‘ctī zttvt: yt¸t˜æ, o`ctt` utctītMtvtt ltitt jnmÙtctto, F‘Mctj t˜ctnt`vt Otct‘, 8. stMt¸Yt stt“j stt˘vctīt`ptt`vtı ⭲ttvt¸āt˙t˜Mtctâ ⭲tt˜Yt*tt˙t˜ītctât` : j`t˜mš^ct:Mtvt SvpttFct, ct:ǐtt`t˜vt˙it ptt`vt cttnctī (PBR-322,PTl ǐt`cyt[t-Ftītpt) Ft¸vtmt‘Ùtt`t˜ptlt ctīt` mtctmÙtt, 9. Ottt˜ct‘ctī mtt˜nuCt¸lttı [t`. Svt. S. ptt`vt mittvttvltjCt ptt`vtt`t˜ctctī ǐttFyt`,jt`, sttvt¸ct˙t˜Mtctī stt˜YtÙtt˙t˜$tctīt` ctīt cttvtct ctīǐÙttCt ctW stvt¸utÙtt`itı 3. ctâtt˜*t‘ctât` ⭲ttˆj ūtˆāt jmtt*tvt
10. Yt˛-t˜āt%ttvt : Øtstct ØtMvt-Ftīt
mttcttv*t Yt˛-t˜āt%ttvt, Yt˛ ⭲ttct˛ât˜lt, mt˙jÛtvtt Yt˛-t˜āt%ttvt, ūtt`āttMct t˜āt%ttvt ⭲ttˆj mltt˜jctât`
: FttoFttW ctīt ptǐtmt˙yt˙Ot, stctMtt`utCt, ptǐt mt˙ctnvt stt“j cttuFtt`lmtpt‘vt, Ktt˜vtpt Ftt`utCt stt“j sttÙtvt stt˜Ytitctvt, utctītMt, mt˙Mǐt`t˜utlt FtotittX ctīt mittvttvltjCt, sttctMÙtctī cttF›tīt` ltitt ct“›tīt` ltlct stt“j Gvtct`ī ctītÙt‘ı ctītyttˇntF[`^š˛mt ctīt` jmttÙtt˜vtctīt` stt“j ctitt´ctījCt, utctītMt mt˙Mǐt`utCt: t˜›tīÙtt
1. mttcttv*t Yt˛-t˜āt%ttvt : Yttitt˜lt t˜ctzttvt mt` mt˙yt˙Ot vptt‘ ctīt` itt˜ltt˜ctt˜Otı Ft˛ictt` ctīt` GlFtt˜òt Sct˙ stvltjmitı t˜ctt˜Yt÷t t˜ctt˜OtÙttW Étjt Mt“ǐttW ctīt t˜ltt˜it t˜ctt˜Ot Sctct˛ ctnlct , utctītMt mt˙Mǐt`utCt ctīt` utYttt˜ctlt ctījvt` cttǐt` ctītjctī, C3 ltitt C4 Ût›tī, utctītMt Mctmtvt, utt˜ctīCct ltitt mtnutt˜ctīCct, utt˜ctīCct t˜vtOtt‘jCt ltitt Ft˛ictt` ctīt` sttÙt¸ı t˜ctItšvttt˜Ytctīltt Sct˙ Ytt-ct“zttt˜vtctī mtctmÙttsttW ctW Fmtctīt GFtÙtt`itı pcttǐttct¸Ktt` ct`ī ctītjCt stt“j GlFtto, ctīt` t˜›tīÙtt t˜ctt˜Ot, itt“.[ GFtFtÛtt` (Sǐct`īǐtt˘Ùt[, mšt`jt˘Ùt[, šFttRvmt, t˜ǐtt˜Ft[˛), FttoFt Mctmtvt ltitt t˜ctīCctvt, vttFš^t`ptvt Ùtt“t˜itctīt`ctījCt ltitt vttFš^t`ptvt pcttǐttct¸Ktt` ct`KtǐttS˙ı Yttct˙īFt ct`ī ctītjCt, utYttct, t˜ctltjCt ltitt Fmtctīt pcttǐttct¸Ktt` ct`KtǐttsttW mt` mtcytvOtı Ytt-stt˜Ytvtt˜lt Sct˙ Gvtctīt ctitt´ctījCtı GFtFtÛtÙt, utt`št`vt ctīt` mt˙jÛtvtt stt“j mt˙Mǐt`utCt, FttoFt ct˛t˜æ itt˜ltÙtt˙ ltitt ptt`Ct‘ltt, ct˛t˜æ nt˘jctt`vt, ct˛t˜æ t˜ctt˜vtÙtctvt stt“j Gvtctīt` jtmttÙtt˜vtctī Ét`Ft-ÛttFt itcYtt`j mttitj KttFÙtt˙ ltitt ctOÙt mttitjt`Ùt ctīšctī, mtct¸õltǐt t˜ctmltjCt ltitt Ftǐt`š t˜ctctlt‘t˜vtctīt`, mtctt˜mitt˜ltı Ftct‘lttW ct`ī utctītj Sct˙ utct˛īt˜lt, ct˛īt˜ut Sctct˛ Gettvt ct˛īt˜ut ctW Gvtctīt ctītÙt‘Yttj stt“j ctnlct, Ft¸uFtvt ctīt` ctītt˜Ùt‘ctīt`, ǐt“t˜it˙ctī stt˜vtut`ÛÙtltt, ytt`pt ctīt st˙ct¸ījCt stt“j utmt¸t˜Fltı Go˛itct ctntÉt`FttW ltitt mttitjtW ctīt` GlFtt˜òtı ctntÉt`Ftt`Ùt t˜ctmittFtvt ctīt` mt˙t˜#tFlt ®Ftj`Kttı n. Yt˛-⭲ttct˛ât˜lt t˜ātYttit : sttOttjYttlt mt˙ctīǐFtvtt ltitt 4. Fttt˜jt˜mstt˜ltctât` : Fttt˜jt˜mitt˜ltctīt` ctīt t˜ctmlttj, Ftt˜jt˜mitt˜ltctīt` ctītjctī, FttoFt mtct¸otÙt stt“j FttoFt stvt¸›tīctCt, ptt`ctctC[ǐt ctīt` mt˙ctīǐFtvtt, ctnlctı Ytt-sttct˛īt˜ltctī utt˜›tīÙttÙtW ltitt Ft“jtctt`šjı Ytt sttct˛īt˜ltctī Ût›tī ltitt Gvtct`ī utt˜ltFttovtı GÛÛttctÛt ǐt#tCtı mt˙jÛtvttsttW ltitt stt˜Mctctīt` ctīt stpt“t˜ctctī stt“j pt“t˜ctctī Itšctī, Ftt˜jt˜mitt˜lt lt˙$t mt˙jÛtvtt stt“j ctītÙt‘, Ftt˜jt˜mitt˜ltlt˙$t ctW vptt‘ ctīt utcttnı Fttt˜jt˜mitt˜ltctīt` ctīt` stvt¸utÙtt`t˜itctī Yttmitǐttct˛īt˜lt mt` mt˙yt˙Otı t˜ctMttǐt Ytt-sttct˛īt˜ltÙtt˙ı stutcttn lt˙$tı Yttjltt`Ùt GFt ctntÉt`Ft ct`ī Ytt-sttct˛īt˜ltctī ǐt#tCtı3. mt˙jÛtvtt Yt˛-t˜āt%ttvt : utt˜ltytǐt stt˜Ytct¸KtlttÙtW-uttct˛īt˜ltctī mt˙Ftot stt“j Gmtctīt mt˙j#tCt mt˙ctīštFt÷t stt“x x˜ctMt`ut #t`$tt` š“ct:mtt, utotutCt stt“j Gmtctīt t˜vtÙt˙$tCtı 5. ⭲ttt˜st‘ctâ ātvtmFtt˜lt ltitt t˜ctct˛īlt ot`It‘ct˛òtpt Sct˙ Mt“ǐt t˜ct®FtCtı ctǐtvtvt ltitt Yt˙,Mtvt ctīt` Ùtt˙t˜$tctīt`ı j“t˜Ktctī ltitt mtctltǐtt`Ùt mt˙jÛtvttS˙ ltitt Gvtctīt` GlFtt˜òt cttǐtctī t˜āt%ttvt : ct˛īt˜ut FttoFttW ctīt Go˛Ytctvt, FttoFttW ctīt Ytt`ptvt, ltvlt¸ t˜šcytj, stt“utet, jytj, Ft`Ùt Ftotit‘, ctmttǐt`, j`t˜ptvt stt“j ittWo, j˙ptctī, cttuFtMtt`ǐt ctnlctı Mt“ǐt mtctt˜ctvÙttmt t˜ctMǐt`utCt stt“j Fmtctīt sttǐt`Ktt`Ùt utt˜ltct`ovt ltitt Ytt-ct“zttt˜vtctī mtctmÙttsttW ctW GFtÙtt`itı Yttjlt ctīt t˜ctctlt‘t˜vtctīt` {t˙Ûttı lt`ǐt, ctīt`švttMtt` pt“ct Gct‘jctī, stǐt˙ctītjctī FttoFt, vptt‘jt`FtCt ltitt Ft`š^t`MtmÙt ct`ī œtt`lt ct`ī ®Ft ctW stOÙtÙtvtı
4. ūtt`āttMct t˜āt%ttvt : mtt#ct (cttF›tīt`) mittǐt (ct“›tīt`) ptt`cttMctı ptt`cttMcttW ctīt Ftt˜jj#tCt ltitt GFtto`Ùtltt ctitt´ctījCt ltitt vttct Ftæt˜lt mt` mttcttvÙt
13. t˜ātt˜Ot : Øtstct ØtMvt-Ftīt
Ftt˜jÛtÙtı pt“t˜ctctī t˜ctctītmt ltitt Fmt Ftj Ft¸jtptt`cttMct ct“zttt˜vtctī stOÙtÙtvt ctīt utYttctı yt“,t˜ctīÙtt`Ftt˘[, t˜ÉctīFttšt` it“mš^t`Ftt˘[, S`cttvttF[, š^tFǐtt`yttFš, 1. Yttjlt ctât` mtt˙t˜ātOttt˜vtctâ t˜ātt˜Ot : 1. Yttjltt`Ùt mt˙t˜ctOttvt ctīt` utct˛īt˜lt Sct˙ Fmtct`ī utct¸Kt ǐt#tCtı n. cttǐt stt˜Otctītj t˜ctMt`utlt: mtctltt ctīt stt˜Otctītj, St˜ctīvttFš ltitt utcttǐttW ctīt` sttct˛īt˜ltctīt`, ctitt´ctījCt ltitt t˜ctctītmtt`Ùt utct˛t˜òt mtt˜nlt Yttct“zttt˜vtctī Ft˜ltntmtı ctīMt`vctī ct`ī utOttvt mtcttn ltitt Gvtct`ī YttutCt Sct˙ stt˜YtcÙtt˜òtī ctīt` mctlt˙$tltt ctīt stt˜Otctītjı uttCt Sct˙ o“t˜nctī mcttOtt`vtltt ctīt stt˜Otctītj ltitt Otct‘, mt˙mct˛īt˜lt Sct˙ t˜Mt#tt mtcytvOtt` ct¸KÙt sttct˛īt˜ltctī it¸Ctı ctītǐttW ctW ctīMt`®ctī ptt`ctvtı [tFvtt`mtt“jı stÕt, itpt ltitt cttvtct ct`ī t˜ctctītmt ctīt t˜ctmlt˛lt stOÙtÙtvtıittW[cttvtt ctvtmFtt˜lt Sct˙ stt˜Otctītjı 3. jtpÙt ct`ī vtt`t˜ltt˜vtoˇMtctī ltlct ltitt cttǐt ctīlt‘cÙtı 4. jt°^Ftt˜lt ctīt` mtt˙t˜ctOttt˜vtctī t˜mitt˜lt ltitt ct˙t˜$tFtt˜juto mt` Gmtctīt mtcytvOtı 5. Fmtctīt ctnlctı mtt#ct ptt`cttMcttW ct`ī utctītj ltitt Gvtctīt lt`ǐt-stvct`utCt ctW t˜ctMt`ut mt˙oYt‘ mtt˜nlt ctnlctı5. mltt˜jctât` : mltt˜jctīt` ct`ī t˜mtætvltı mltjt`Ùt jtpÙtFttǐt ctīt` mtt˙t˜ctOttt˜vtctī t˜mitt˜lt ltitt Gmtctīt` Mtt˜òtīÙtt˙ı 6. GÛÛt Sct˙ GÛÛtltct vÙttÙttǐtÙt, Gvtctīt` Mtt˜òtīÙtt˙ ltitt stt˜Otctītt˜jlttı 7. vt“mtt˜it‘ctī vÙttÙt ctitt´ctījCt ltitt vttct Ftæt˜lt mltt˜jctīt`Ùt cttvtctī cttFt›tīctı Yttjltt`Ùt GFtctntÉt`Ft ct`ī t˜ctt˜Yt÷t Yttct“zttt˜vtctī utCttt˜ǐtÙttW ctīt` t˜ctmlt˛lt stOÙtÙtvtı mltjt˜ctzttvt ct`ī t˜mtætvltı 8. mt˙It Sct˙ jtpÙttW ct`ī ctOÙt t˜ctOttÙtt` Mtt˜òtīÙttW ctīt t˜ctltjCt, mt˙It Sct˙ jtpÙttW ct`ī utMttmtt˜vtctī Sct˙ t˜ctòtt`Ùt mtcytvOtı 9. utlÙttÙtt`t˜ptlt ctW mtt`ctt mtctmÙttS˙-ct“īt˜cyt,Ùtvt Fttct‘-ct“īt˜c›tīÙtvt, Ftjt˜ctÙtct-š^tF‘S`t˜mtctī, t˜›tīš`Mtvt-šjt˜MtÙtjt` ltitt vÙttptt`vt-ct:cttšjvtjt`ı Yttjlt ct`ī utct¸Kt Mt“ǐt mtcttntW t˜ctOttvt, Fmtctīt` mtt˙t˜ctOttt˜vtctīltt, ltitt Fmt Ftj vÙttt˜Ùtctī Sct˙ t˜ctOttÙtt` t˜vtÙtv$tCtı 10. Yttjlt ctW cÙttFttj Sct˙ cttt˜CtpÙt ctīt` mctlt˙$tlttı 11. sttFttlt
ctīt t˜ctMct ct`ī mtctlt¸ǐÙttW mt` mtnmt˙yt˙Ot t˜ctt˜Yt÷t Yttct“zttt˜vtctī utCttt˜ǐtÙttW ct`ī mltt˜jctīt` ctīt` ®Ftj`Kttı Yttjltt`Ùt ctntÉt`Ft ctW Ft¸jt Yttct“zttt˜vtctī (ctītǐtctīt`) GFtytvOtı 1n. t˜mtt˜ctǐt mt`ctctīt` ctīt` mtt˙t˜ctOttt˜vtctī mt¸j#ttÙtWı 13. mt˙mtot`Ùt t˜ctMt`uttt˜Otctītj Sct˙ Gvtct¸t˜òtīÙtt˙ı 14. mt˙t˜ctOttvt ctīt mt˙Mtt`Otvtı
ptǐtcttÙt¸ ltitt sttivt`Ùt mtt˜›tīÙtlttı Ft¸jt Ytt“itt`t˜ǐtctī Ft¸vt: t˜vtctt‘Ctı
Yt˛-t˜āt%ttvt :t˜Éltt`*t ØtMvt-Ftīt
t˜›tâmšīt t˜āt%ttvt, Ktt˜vtūt t˜āt%ttvt, Mtˆīt t˜āt%ttvt ltstt ⭲ttt˜st‘ctâ Yt˛t˜āt%ttvt
n. ⭲tvltjt‘°^t`*t t˜ātt˜Ot : 1. stvltjt‘uš^t`Ùt t˜ctt˜Ot ctīt` utct˛īt˜ltı n. œtt`lt : mt˙t˜Ot, ®t˜.{ mtYÙt jt°^tW Étjt cttvÙtltt uttFlt t˜ctt˜Ot ct`ī mttOttjCt t˜mtætvlt, t˜ctt˜Ot t˜vtOtt‘jCt ct`ī t˜ǐtÙt` mtctvt¸ut˙itt` mttOtvtı 3. stvltjt‘°^t`Ùt t˜ctt˜Ot stt“j jt°^t`Ùt t˜ctt˜Ot ct`ī ytt`Ût mtcytvOtı 4. jtpÙt cttvÙtltt stt“j jtpÙt Gòtjtt˜Otctītjı 5. jtū*ttW ct`â jtū*t #t`īt : stpt‘vt stt“j Ktt`vt` ctīt` jt`t˜ltÙtt˙ı 6. mtct¸õ : stvltoˇMtt`Ùt ptǐt cttit‘, #t`$tt`Ùt mtctt`FtFtmlt #t`$t,
1. t˜›tâmšīt t˜āt%ttvt, t˜›t˙īmšǐtt`Ùt ltitt stt˜›tīmšǐtt`Ùt Ftotit‘ t˜octīmittvt mtcttnı pttǐtctī mtctt˜ctt˜ltı t˜›tīmšǐttW ctīt 32 mtctt˜ctt˜lt ctit`tË ctW ctitt´ctījCtı ctntt˜ÉFtt`Ùt GFtltš, stvtvÙt sttt˜it‘ctī Ftt˜j#t`$t ltitt jt°^t`Ùt stt˜Otctītt˜jltt mt` Ftj` mtct¸õı 7. sttctītMtt`Ùt #t`$t ltitt t˜ctcttvt mt˙Ûttǐtvtı 8. āttn˛*t
t˜›tīmšǐt mt˙ct`īltvt ctīt` st˙ltjt‘°^t`Ùt Ftæt˜ltı t˜›tīmšǐt mtctt˜ctt˜lt ct`ī t˜vt®FtCt ctW t˜$tt˜ctct ut#t`Ft ctīt GFtÙtt`itı Ùtctǐtvt ltitt Ùtctǐt t˜vtÙtctı t˜›tīmšǐt ⭲tvltt˜j#t : cttn˛Ùt stvltt˜j#t ctīt` Ktt`pt ltitt GFtÙtt`itı 9. ā*tt˜òtâ: jt°^t`Ùtltt, jtpÙtnt`vtltt, cttvtcttt˜Otctītj stt“j Fmtctīt utctlt‘vtı 10. jtū*ttW stt˜vtÙtt˜ctltlttÙtWı t˜›tīmšǐt stOÙtÙtvt ctW Sct:mtj` ctīt GFtÙtt`itın. ØtctâtMtctât`*t Ktt˜vtūt t˜āt%ttvt : utctītMt ct`ī mttcttvÙt t˜mtætvltı mtcto“t˜Mtctīltt ltitt ctât` ⭲tt˜Otctâtt˜jltt : stt˜Otctītt˜jltt ctīt sttOttj, stt˜Otctītt˜jltt mt` Gvct¸t˜òtīı 11. utlÙtFt‘Ct ltitt MtjCtı 1n. jtptvtt˜Ùtctī ltitt ctītmt˙¸ǐtt`Ùt utt˜ltt˜vtt˜Otı stmtcto“t˜Mtctīlttı utctītt˜Mtctī ett`t˜vtctīt ctīt` mt˙ctīǐFtvttı ytn¸ctCt‘ltt, t˜ÉstFtctpt‘vt, cÙtt˜òtīctījCt ctCt‘ ltitt t˜ctǐtt`Ftvtı t˜›tīmšǐttW ctW utctītt˜Mtctī stvt¸mittFtvt 13. t˜vtctt‘Ct GFtÙtt`ptvt ltitt FtÙt‘ctmttvtı 14. jtpÙt Gòtjott˜Ùtlctı 15. mt˙Ùt¸xxx xx°^ Gö`MÙt stt“x x˜mtætvlt, utct¸Kt st˙it Gvtctīt` Mtt˜òtīÙtt˙ stt“j ctītÙt‘ı t˜ct#t`FtCt, utctītt˜Mtctī mtntÙtctī GFtctījCtı 3. Ktt˜vtūt t˜āt%ttvt : t˜›tīmšǐt jmttÙtvt ct`ī ltlct-yt˙Otctī ct`ī utctītj, sttÙtt˜vtctī t˜$tpÙtt, mtctvctÙt mt˙KÙtt, 16. stvltjt‘°^t`Ùt t˜ctcttotW ct`ī Mttt˜vltFttCt‘ t˜vtFtštj` ctīt` jt`t˜ltÙtt˙ı 17. ytīt ctât t˜ātt˜OtFt˛Ct‘ ⭲tātītcyt: stt›tīctCt, sttlctj#tt stt“j nmlt#t`Ftı 18. mtct®t˜Ftltt, ytn¸®t˜Ftltt ltitt cttīš®t˜Ftlttı t˜mtt˜ǐtct`īštW ctīt mt˙jÛtvttlctctī ctitt´ctījCt Mt“ǐt-t˜vtctt‘Ctctītjt` Ktt˜vtpttW ctīt t˜ctmlt˛lt stOÙtÙtvt, Gvtct`ī sttCtt˜ctctī stvttW ct`ī utÙtt`it ctīt` ct“Otlttı
Ytt“t˜ltctī, jtmttÙtt˜vtctī ltitt utctītt˜Mtctī it¸Ct ltitt Gvtct`ī utÙtt`it (Ùtt˜o ctīt`F‘ nt`) Fvt Ktt˜vtpttW ct`ī Ftt˜jctlt‘vt GlFtto ctīt stOÙtÙtvtı4. Mtˆīt t˜āt%ttvt
t˜ātt˜Ot : t˜Éltt`*t-ØtMvt-Ftīt
: ct“ictt Fmtctīt utptvtvt,utct˛īt˜lt ltitt mt˙Itšvtı t˜Ést˙itt`, t˜$tst˙itt`, utCttǐtt` ctīt mttcttvÙt uttctmitt sttj`Kt ltitt Gvtctīt ctnlctıytt˘ctvt stt˜Ytt˜›tīÙtt 1. (ctâ) ⭲tFtjtOt t˜ātt˜Ot : (⭲t) stFtjtOt ctīt` mt˙ctīǐFtvtt, sttctMÙtctī ltlct, stFtjtOt ctīt` lt“Ùttjt` Sct˙ utÙtlvt (yt) Yttjltt`Ùt oC[ mt˙t˜nlttı 1. mttOttjCt t˜mtætvltıct“ivtt`Ùt t˜ctYt`ovt ltitt mctt˙itt`ctījCtıit9vt ltitt mt˙jÛtvtt Sct˙ Gvtctīt Mt“ǐtptvtctī ctnlctı sttivt`Ùt Mt“ǐttW ctīt ctitt´ctījCt Yttjlt ct`ī utct¸Kt stFtctto, n. mt˙Ùt¸òtī Sct˙ sttvctt˜Ùtctī xxx˜Ùtlct, 3. o¸uut`jCt, 4. sttFtjtt˜Otctī ut[Ùt˙$t, 5. jtpÙt ct`ī t˜ct®æ stFtjtOt, 6. ǐtt`ctī Mtt˙t˜lt ct`ī t˜ct®æ sttivt`Ùt Mt“ǐttW ctīt` Mt“ǐtctCt‘vtltt ltitt Mt“ǐtptvtvt-«t`vttFš, #ttjt`Ùt Mt“ǐt, ÛttvttˇctītFš, Svtt˘ittˇmttFš ltitt [`ctīvt yt`mttǐšı stctmttot` Mt“ǐttW ct`ī t˜vtctt‘Ct stFtjtOt, 7. cttvtct Mtjt`j ct`ī t˜ct®æ stFtjtOt, 8. mt˙Ftt˜òt ct`ī t˜ct®æ stFtjtOt, 9. t˜ctcttn mt` mtcytt˜vOtlt stFtjtOt, 10. cttvtntt˜vtı
ctīt` utt˜›tīÙttÙtW utmt˙Itvtvt ltitt t˜Mtǐtt`Ytctvtı it9vt ltitt mt˙jÛtvtt Sct˙ Gvtct`ī ctnlctı stctmttot` Mt“ǐttW ctīt ctitt´ctījCt, Kt˙[pt ltitt t˜ctKt˙[ptı Yttjt` n. t˜mtt˜xxxx ⭲tt˜Otctâtj mt˙j#tctâ ⭲tt˜Xxx˜vt*tct, 1955 3, on`ūt Xxx˜lt<t`Ot ⭲tt˜Xxx˜vt*tct, 1961 4, KttÅt ⭲tFtt˜ctßtCt ⭲tt˜Xxx˜vt*tct, 1954 (Kt)
Ktt˜vtpt ltitt Gvtctīt ctnlctı t˜vt#t`FtCt-FtÙtt‘ctjCt ctīt` ctt“t˜ǐtctī Ftt˜jctīǐFtvtt, stct:mttot` mt˙ǐt#tCtt` ltitt Go˛itct #t`$tı mttcttvÙt Mt“ǐt-utctītjtW ctīt` ⭲tFtct˛âl*t t˜ātt˜Ot : 1. stFtct˛xxXx-xxx˜Ùtlct ctīt` utct˛īt˜lt, n. ot`ut Ftj sttOttt˜jlt xxx˜Ùtlct Sct˙ ctī9t`j xxx˜Ùtlct, 3. mtt˙t˜ctt˜Otctī xxx˜Ùtlct, 4. utlÙttÙt¸òtī Mt“ǐtctCt‘vtlttı ctītÙtt˙ltt˜jctī utt˜›tīÙttÙtW ltitt ctītÙtt˙ltjCt ct`ī utctītjı ctītÙtt˙ltt˜jctī ctīt`t˜š («t`[), ptt`vt ltitt mt˙ǐt#tCtt` AFM ltitt ACF, AKF xxx˜Ùtlct, 5. mt˙Ùt¸òtī stFtct˛īlÙt ctīltt‘, 6. GFt`#tt, 7. ctīyptOttjt` ctīt xxx˜Ùtlct Sct˙ mt˙jÛtvttsttW ct`ī mtcytvOt ctW Gmtctīt xxx˜Ùtlct, 8. t˜vtjt`Ot stt“j sttj`Ktı ctītÙtt˙ltt˜jctī Mt“ǐtt` ct`ī it9vt, mt˙jÛtvtt ltitt vttct Ftæt˜ltı ctnlctFttCt‘ Mt“ǐttW ctīt` Mt“ǐtctCt‘vtltt ltitt Mt“ǐtptvtvtı 5. ⭲ttt˜st‘ctâ Yt˛ t˜āt%ttvt mt˙Ftt˜jctlt‘vt, 9. cttvtntt˜vt, 10. stutotutCt, 11. t˜ctiÙtt ctītjtcttmt ltitt t˜ctÉ`utFttCt‘ stt˜YtÙtt`ptvtı
: stÙtmctī, stÙtmctī Ktt˜vtpt ltitt itWit, stÙtmctī stt“mtlt utt˜ltMtltı Ktt˜vtpt t˜vt#t`FttW ct`ī t˜vtctt‘Ct ctīt` utt˜›tīÙttı stÙtmctī t˜vt#t`FttW ct`ī mttcttvÙt ®Ft Sct˙ n. mt˙t˜ātot t˜ātt˜Ot uāt˙ āttt˜Ctt˜ū*tctâ t˜ātt˜Ot : 1. mt˙t˜ctot t˜vtctt‘Ct, n. mtcFtt˜òt xxx˜utlt ctījvt` cttǐt` ctītjCt, 3. MttvÙt, MttvÙtctījCtt`Ùt, stct“Ot stt“j
mt˙jÛtvtt stÙtmctī t˜vt#t`FttW ctīt ctitt´ctījCtı stÙtmctī t˜vt#t`FtCt ctīt t˜vtÙt˙$tCtı Ottlt¸ptvtt˜vtctī Ùt¸itı Yttjlt ct`ī ctnlctFttCt‘ Ottlt¸ctÙt ltitt stOttt˜lctctī stutctlt‘vtt`Ùt mt˙t˜ctotÙtW, 4. mt˙t˜ctotsttW ctīt stvt¸Fttǐtvt, 5. mt˙t˜ctotlctctī yttOÙtlttsttW ctīt` mtcttt˜Flt, mt˙t˜ctot ctīt t˜ctctīǐtt`ctījCt, 6. mt˙t˜ctot ctīǐFt, 7. mt˙t˜ctot t˜vt#t`Ft, lt“ǐt ltitt uttct˛īt˜ltctī it“mt #t`$t ltitt ctīt`Ùtǐtt #t`$t ctīt stOÙtÙtvtı Yttjlt ctīt` Ktt˜vtpt mt˙Ftotı Ktt˜vtpt-stit‘Mttvtı jt°^t`Ùt vtt`t˜ltı Ktt˜ptvttW Yt˙it ct`ī t˜ct®æ GFtÛttj, 8. cttǐt t˜ct›tīÙt stt˜Xxx˜vtÙtct, 1930 Yttjltt`Ùt Yttitt`otjt` stt˜Xxx˜vtÙtct, 1932 10. Ftj›tītcÙt t˜ǐtt˜Ktlt stt˜Xxx˜vtÙtct, 1881
ctīt` mt˙j#tCtltt ltitt GFtÙtt`t˜itlttı 6. ⭲tvt¸Øt*t¸ctält Yt˛t˜āt%ttvt : Fttcttˇ#tCt ltitt stvct`utCt ltctīvtt`ctī ctīt` cttǐtYttt˜ltı Ktvtvt , utt˜ltÛtÙtvt, stÙtmctī ltitt
14. FtMt¸Fttītvt uāt˙ FtMt¸t˜Ûtt˜ctâlmtt t˜āt%ttvt : Øtstct ØtMvt-Ftīt : (Yttit-⭲t)
Ktt˜vtpt mtpptt`ctījCt ctīt` ct¸KÙt t˜ctt˜OtÙtt˙ıstt˜YtÙtv$tCt ytt˙Ot, mt¸j˙it mt`lt¸, ltitt mt.[ctī ctītÙttX ctW Yttct“zttt˜vtctī ctīmtt“t˜xXxx˙ı ct˛ot ltitt Ytt“ctptǐt, (⭲t) FtMt¸ Ftt`<tCt : 1. vūtt‘ Ftt`<tCt : vptt‘ ßtt`lt, vptt‘ ÛtÙttFtÛtÙt, ptt`ctvt t˜vtctt‘n, o¸iOt-GlFttovt ctt˙mt, stC[t ltitt ctītÙt‘ ct`ī t˜ǐtS vptt‘ ctīt`
Yttt˜ctzttvt stt“j YttjmttÙtvt ct`ī cttǐtltlctı yttÙtct-Ftīt`št` ltitt GFt«tn utt˜ltcttsttW (mt`š`ǐttFš Fct`ptjt`) ctīt Yttct“zttt˜vtctī stvct`utCt ctW GFtÙtt`itı sttctMÙtctīltt, KttettW ctīt` vptt‘ cttǐÙtt˙ctīvtı x. Xxx`št`vt Ftt`<tCt : utt`št`vt ct`ī œtt`lt, utt`št`vt ctīt FttÛtFt ltitt ÛtÙttFtÛtÙt, utt`št`vt cttǐÙtt˙ctīvt, ptt`ctvt
11. ctvtt`t˜āt%ttvt : Øtstct ØtMvt-Ftīt : ct˛ītYt˛lt ctvtt`ātˆ%ttt˜vtctâ Xxx˜›tâ*ttu˙
t˜vtctt‘n Sct˙ GlFttovt ct`ī t˜ǐtÙt` utt`št`vt ctīt` sttctMÙtctīlttı sttntj ctW vptt‘ ltitt utt`št`vt ctīt stvt¸Fttltı 3. Ktt˜vtūt Ftt`<tCt : FtMt¸sttW ct`ī t˜ǐtÙt` Ktt˜vtpt
1. ctvtt`t˜āt%ttvt : Ftt˜jÛtÙt, t˜ctutÙt ctmlt¸ mt“ætt˜vltctī GFttitct, Go˛ot`Ftvt-stvt¸t˜›tīÙtt, mt˙zttvttlctctī, mttÛtvtt ut›tīctCt ltitt cttvtctlttcttot`, t˜ctzttvt ctW ctīt œtt`lt, ctītÙt‘, ctīctt` ct`ī ǐt#tCt, sttctMÙtctīltt ltitt Ktt˜vtpt ǐtctCttW mt` Fvtctīt mtcytvOtı 4. t˜ātštt˜ctvmt : ntjctt`vmt Sct˙ Kttet ÙttWitpt œtt`lt, ctvtt`t˜ctzttvt ctīt mittvtı n. t˜ātt˜Ot*tt˙ : zttvt ct`ī œtt`lt, Ft˜võÙttvt¸Ytt˜ctctī t˜ctt˜OtÙtt˙-utÙtt`ittlctctī, utct˛īt˜ltcttot` t˜vtjt`#tCt ltitt vt“xxx˜vtctī, utoòt mt˙ctīǐtvt ctītÙt‘, ctīctt` ct`ī ǐt#tCt, sttctMÙtctīltt ltitt Ktt˜vtpt ǐtctCttW mt` Fvtctīt mtcytvOtı 5. ⭲tvt¸Øt*t¸òtâ Ftt`<tCt : Kttet stOÙtÙtvttW ct`ī cttǐÙtt˙ctīvt ctīt` cÙtòtī ctīt` t˜ctt˜OtÙtt˙-ut`#tCt, mtt#ttlctītj, utMvttctǐtt`, Ftjt`#tCt ltitt cttFtt˜vtÙtt˙, cÙtt˜òtīct˛òt, t˜ctutÙt ctmlt¸ t˜ctMǐt`utCtı 3. ā*tātntj ct`â ūtˆt˜ātctâ ⭲ttOttj : ctījvt` ctīt` utCttt˜ǐtÙtt˙, FttÛtctīltt ltitt mt˙lt¸ǐtvt stOÙtÙtvt, Kttet cttvtct ltitt Kttet vptt‘ ctīt cttFtvt, Mttjt`t˜jctī ct˛t˜æ , ptt`ctvt t˜vtctt‘n Sct˙ GlFttovt ct`īvõt`Ùt, Ftt˜jOtt`Ùt ltitt mcttÙtòt ltt˜v$tctīt-lt˙$t ctīt` ®Ft j`Ktt, ctt˜mltuctī ct`ī utctītÙttX ctīt mittvtt`ctījCt, utctt˜mltuctīt`Ùt itt`ǐttOttˇ ctīt` t˜ctt˜MtušlttS˙, ct`ī t˜ǐtÙt` Ftt`uÙttW ctīt` sttctMÙtctīltt, mt˙lt¸t˜ǐtlt sttntjı 6. ūt¸ittītt` ctâjvt` āttīt` FtMt¸⭲ttW ctât Ftt`<tCt: o¸iOt GlFttovt ltitt Gvtct`ī mt˙it9vt ct`ī mt˙oYt‘ lt˙t˜$tctīt sttct`it Gvtctīt mt˙ctnvt, mt˙«ttnctītW ctīt` cÙtctmitt stvlt: vttctt` ltv$t, Mttjt`t˜jctī ct˛t˜æ , mtt˙ct`t˜itctī t˜›tīÙttsttW ltitt cÙtt˜òtīlct jÛtvtt ctW Fmtctīt` ctW Ftt`uÙt ltitt Gvtctīt ÛtÙttFtÛtÙt, mttKtt` Sct˙ otOttv ittÙttW, YtQmtt`, ytÚ.[t ltitt stt`mtj ctīt` Ftt`uÙttW ctīt` sttctMÙtctīltt ltitt Gvtctīt Ftt˜jctīǐtvtı 7. Yttt˜ctctītı 4. Øtl*t#tFtjctâ Xxx˜›tâ*ttu˙ : utlÙt#tFtjctī o`nǐtt` ctīt mtctmÙtt: ct:ǐttt˜mtctīt` ctvtt`Ytt“t˜ltctīt` ltitt mt˙ct`īlt mt˙zttFtvt t˜mtætvlt, stctOttvttlctctī ūt¸ittītt` vt ctâjvt` āttīt` FtMt¸⭲ttW ctât Ftt`<tCt : ctt˙mt Sct˙ stC[t GlFttovt ct`ī mt˙oYt‘ ctW Ftt`uÙt ltitt Gvtctīt ÛtÙttFtÛtÙt, stC[t o`vt` cttǐtt` ct¸t˜it‘ÙttW utt˜›tīÙttS˙: ÛtÙtvttlctctī stctOttvt ltitt mt˙It˛lt stctOttvt, sttct˛īt˜lt, ctCt‘ ltitt itnjtF‘ ct`ī utlÙt#tCt, utlÙt#tFtjctī mit“Ùt‘: t˜mitjltt-stt˜mitjltt ctīt yt,tÙtǐtj ltitt mttctījtW ctīt` Ftt`uÙttW ctīt` sttctMÙtctīltt ltitt Gvtctīt Ftt˜jctīǐtvtı
t˜ctjt`OttYttmt, utlÙt#tFtjctī mt˙ct`ovtMtt`ǐtltt ltitt utlÙt#ttlctctī mt¸j#tt: ct`īvõt`Ùt t˜vtOtt‘jctīı 5. ⭲tt˜Otitct Xxx˜›tâ*ttu˙: stvt¸ytvOtvt ct:ǐttt˜mtctīt` ltitt (yt). FtMt¸ Mtjt`x x˜›tâ*tt t˜āt%ttvt : 1 āt˛t˜æ ltstt FtMt¸ GlFttovt : ptvct ct`ī Fttct‘ ltitt ptvct ct`ī ytto ct˛t˜æ , Ftt˜jFtct:ctltt, ct˛t˜æ ctīt` j`Ktt, ct˛t˜æ
vt“t˜ctt˜òtīctī, ut`#tCttlctctī stt˜Otitct cttt˜Ûtctī stt˜Otitct-t˜ctt˜OtÙtt˙ Sct˙ utt˜›tīÙttÙtW, mttnÛtÙt‘cttot` ltitt mt˙it9vttlctctī utt˜›tīÙttS˙, t˜ctǐtt`Ftvt t˜ctYt`ovt ltitt ctīt t˜ctt˜vtÙtct, ct˛t˜æ ctīt` o#tltt, Mtjt`j ct`ī mt˙it9vt ltitt ctt˙mt ct`ī it¸Ct Ftj utYttct [tǐtvt` cttǐt` ctītjctīı n. o¸iOt GlFttovt : stÙtvt ct`ī t˜ctctītmt mttcttvÙtt`ctījCtı 6. mct˛t˜lt : cttīšmt˙ct`īltvt-mt˙jÛtvttlctctī, OctvÙttlctctī ltitt Mtyotit‘ t˜ctutÙt ctīt É“lt cttīš mt˙ct`īltvt, mt˙ct`ot`, mct˛t˜lt, ot`It‘ctītt˜ǐtctī mct˛t˜lt: ctW ntjctt`vtt` ctīt t˜vtÙt˙$tCt, o¸iOtßttct Sct˙ o¸iOtctījCt, ittÙt ltitt Yt“mt ct`ī o¸iOt ctīt mt˙it9vtı 3. FtMt¸ ūtvtvt: vtj ltitt cttot ptvtvt st˙it, Gvtct`ī ct˛òttltctctī, Mtyotit‘ t˜ctutÙtctī ltitt utt˜›tīÙttlctctī, t˜ctmctjCt: cÙtt˜òtīctījCt ltitt Go˛ot`Ftvt cttīš mt˙ct`īltvt t˜ctt˜ctOtltt, jÛtvttlctctīltt mct˛t˜ltı 7. mtctm*tt Yttit ltitt ctītÙt‘ı 4. FttÛtvt Mtjt`x x˜›tâ*tt t˜āt%ttvt : FttÛtvt ct`ī st˙it ltitt Gvtct`ī ctītÙt‘, pt¸ittǐtt` ctījvt` cttǐt` ltitt pt¸ittǐtt` vt ctījvt` cttǐt` FtMt¸sttW mtcttOttvt, ltct‘âvtt ltstt t˜Ûtvltvt : mtctmÙtt mtcttOttvt ct`ī ut›tīct ltitt t˜vtOtt‘jctī sttitctvttlctctī, t˜vtitctvttlctctī, ltct‘īvtt, Ftt˜jctīǐFtvtt Ftjt`#tCt, Yttutt ctW ctītyttˇntF[^`š˛mt utt`št`vt ltitt ctmtt ctīt FttÛtvtı 5. Ft*tt‘ātjCt Mtjt`x x˜›tâ*tt t˜āt%ttvt : FtÙtt‘ctjCt ctītjctītW ctīt Mtjt`x x˜›tīÙtt t˜ctzttvt mt` mtcytvOt
mt˙āt`it : mt˙ct`ittW ct`ī mctvFt ltitt t˜ctctītmt, mt˙ct`it ct`ī t˜mtætvlt-o“t˜nctī mt˙zttlctctī ltitt t˜ctjt`Xxx` ut›tīct, mt˙ct`it ct`ī mt˙ct`īltctī, mt˙ct`ittW ctīt` FtnÛttvtı 9..
ltitt t˜ctÛttjCt, ntt˜Ft‘īÙtvt t˜ctÛttj ltitt Gvtctīt` mtcttǐtt`Ûtvtt, t˜Ûtvltvt ctW mttÛtvtt ut›tīctCt, ct˛īt˜$tct mt˙utlÙtÙttW ctīt stt˜Otmtct ltitt mcttYttt˜ctctī mt˙ctit‘ı 8. ltitt Mtjt`x x˜›tīÙtt stvt¸cttīǐtvt ctīt` t˜ctt˜Ot, FtMt¸sttW ct`ī jnvt--mtnvt ctīt` t˜vtÙt˙t˜$tlt ctījvt` ct`ī t˜ǐtÙt` t˜ctt˜Yt÷t t˜ctt˜OtÙtt˙, cttlttctjCtt`Ùt utt˜ltytǐt ltitt jt`ctīvt`
Continued....
ct`ī GFttÙtı 6. ātt`*t‘ ct`â it¸Ct, mt˙j#tCt ltstt ct˛ât˜ītct itYtt‘Ottvt : ctt`Ùt‘ ctīt mt˙Itšvt, Mt¸›tītCt¸ ctīt mt˙Itšvt, mctKtt˜ǐtlt ctt`Ùt‘ ct`ī Ytt“t˜ltctī ltitt Sct˙ sttÙttctı 9. ātˆoˆt˜Mtctâ, j#tt uāt˙ ⭲ttvltt˜jctâ vtt`t˜lt*ttW ctW mtn--mtcytvOtı
jtmttÙtt˜vtctī it¸Ct, ctt`Ùt‘ mt˙j#tCt, ctt`Ùt‘ ltvt¸ctītjctī ctīt mt˙it9vt, Mt¸›tītCt¸ ctīt mttvõCt, ltvt¸ct˛īlt ctt`Ùt‘, ctīt mittvttvltjCt, ctt`Ùt‘ ctīt` stt˜ltt˜nctt`ct˛īlt ltctīvtt`ctīı
Yttit-yt
KtC[--yt
10. Yttjlt ctīt` mt¸j#tt ct`ī t˜ǐtS S`t˜ltntt˜mtctī t˜ctjtmtlt, Ytt--jtptvtt`t˜ltctī Sct˙ Yttct vttltt˜ptctī «ttnÙtlttS˙ı 11. jt°^t`Ùt mt¸j#tt mtctmÙttÙtW ltitt Yttjlt Étjt mt¸j#tt ctīt` ltǐttMt:(⭲t) t˜ctÕt vttltt˜ptctī utt˙itCt ctW Yttjlt: mtctctītǐtt`vt utct˛t˜òtÙtt˘ı (yt) Yttjlt Étjt Fttt˜ctīmlttvt ct`ī mttFt`#t mt¸j#tt ctīt` ltǐttMt (stetltvt), Fttt˜ctīmlttvt ct`ī
(mt) FtMt¸Otvt GlFttovt uāt˙ ØtytvOt : 1. āttt˜Ctū*tctât`*t [`jt` Ftâtt˜ct‘it : Yttjltctut‘ ltit t˜ctctīt˜mtlt o`MttW ct`ī [`jt` Ftītt˜ct‘it ctīt lt¸ǐtvttlctctī stOÙtÙtvt, t˜ctt˜ßtlt Kt`lt FttjcFtt˜jctī, vttt˜Ytctīt`Ùt Sct˙ ut#t`Fttvt ctītÙt‘›tīct ltitt Yttjlt ctīt` utt˜ltj#tt Ftj Gvtctīt mt˙Ittltı Yttjlt ct`ī t˜ctctīǐFt (mt) Yttjlt-- Ûtt`vt mtt`ctt t˜ctctto: t˜mitt˜ltÙttB Sct˙ ct`ī stvltit‘lt ltitt t˜ctt˜Mt° Kt`ltt` ct`ī vFt ctW [`jt` cÙtctmttÙt, sttt˜it‘ctī [`jt` Ftītt˜ct‘it, [`jt` Ftītt˜ct‘it ctīt` Mt¸vsttlt [`jt` ct`ī t˜ǐtS Ft˙tptt` ltitt Yttt˜ct ctīt` sttctMÙtctīltt, stšctīǐtW mtt`ctt-- t˜ctctto ct`ī mtcttOttvt n`lt¸ utÙttmt, Yttjlt ct Ûtt`vt ct`ī ctOÙt mtnÙtt`ittlctctī mt¸j#tt ctīt {t˙Ûtt (o) ytt˙iǐtto`Mt, vt`Fttǐt, Yttštvt, cÙtt˙cttj ßtt`ǐt˙ctīt, [`jt` Ftītct‘ cÙtctmitt, mttcttvttW ctīt` Fctīš˛9t ctījvtt, [`jt` Ftītct‘ ct`ī t˜ǐtS stctmtj, [`jt` FtMt¸ ctīt` #tctltt Ftj utYttct [tǐtvt` cttǐt` ctītjctī, Ùttit stt˜Ytǐt`Kt, sttÙt cÙtÙtctī, cttǐtot`ct stt“j stFtīittt˜vtmlttvt ct`ī mttit Yttjlt ct`ī vttltt˜ptctī Sct˙ stvÙt t˜nlttW ctīt` FttjmtFtt˜jctīltt (F‘) mtt`lt Ùt¸æt`òtj ctītǐtt`vt ot˜#tCt t˜mtcttF‘ vttltt˜ptctī cttlttctjCt o¸iOt GlFttovt Ftj cÙtÙt, o¸iOt ct`ī cttǐÙt ctīt t˜vtOtt‘jCt, cÙtt˜òtīitlt utytvOtın. mttcttv*t ØtytvOt : FtMt¸Otvt utytvOt (itt˜Yt‘lt ltitt o¸Ottv ittÙt, vtctpttlt ytÚ.[t) ctW #t`$t mt` yttnj ctīt` Mtt˜òtīÙttW ctīt` Yttt˜ctctīt ltitt Yttjlt ctīt` mt¸j#tt «ttnlttS˙ (Ftâ) Yttjlt ltitt ot˜#tCt St˜MtÙttF‘-- Ft.[t`mtt` o`MttW ct`ī t˜ǐtS t˜ctÕttmt ltitt mt¸j#tt- FtMt¸Otvt stt˜Ytǐt`Kt, mctÛÚ o¸iOt GlFttovt ct`ī t˜mtætvlt, FtMt¸Otvt Kt`ltt` ctīt stit‘Mttvt FtMt¸Otvt ltitt ct¸īct:ct¸īštW ct`ī t˜ǐtÙt` sttcttmt, Yt.`[` ytctījt`, mttctīj ltitt ct¸īct:ct¸īš -mt˛ptctī GFttÙttW ctīt` sttctMÙtctīltt (mt) #t`$tt`Ùt mt¸j#tt n`lt¸ Sctī ctt˘[ǐt ct`ī vFt ctW ot˜#tCt St˜MtÙttF‘ #t`$tt`Ùt mtnÙtt`it mt˙it9vtı 1n. t˜āt%ttvt, ØttˆÅtt`t˜itctât` uāt˙ Yttjlt utytvOt ctīt` mttcttvÙt mtctmÙttÙtWı 3. Øttmtvt ØtytvOt : [`jt` FtMt¸sttW ct`ī t˜ǐtS mtmltt Sct˙ cÙtctntt˜jctī sttntj t˜ctctīt˜mtlt ctījvttı ctut‘Ytj ct`ī tǐ˜ tS nj` Ûttj` ctīt` cÙtctmitt ctât` mt¸j#ttı(⭲t) jt°^t`Ùt utt˜ltj#tt ct`ī t˜ǐtS Yttjlt ct`ī ct“zttt˜vtctī ltitt utt“ett`t˜itctī sttOttjı(yt) Yttjlt ct`ī t˜ǐtS mtct`t˜ctīlt t˜ctzttvt vtt`t˜lt ctīt` sttctMÙtctīlttı (mt) Yttjlt ctījvtt, [`jt` Ftītct‘ ct`ī t˜ǐtS Yttt˜ct ltitt nj` Ûttj` ctīt` sttctMÙtctīltt, mttKt` FtMt¸, vtctpttlt ytÚ.[`, mtt˙[ stt`mtj ltitt utptvtvt Ùtt`iÙt FtMt¸ ct`ī t˜ǐtS sttntj cÙtctmittı ctīt utt˜ltj#tt stt“ett`itt`ctījCt ltitt GFtǐtt˜yOtÙttBı (o) Yttjlt ctīt stvt¸mt˙Ottvt ct t˜ctctītmt (sttj0 ct [t`0) 13. Yttjlt ctât` vttt˜Ytctât`*t vtt`t˜lt ltstt t˜ātctâīFt: (⭲t) Yttjlt
4. mt˛Kt` ctât` t˜mstt˜lt ctW FtMt¸⭲ttW ctât ØtytvOt : mttKt`, ytt.{ ltitt stvÙt sttFttltctītǐt t˜mitt˜lt ctW FtMt¸sttW ct`ī t˜ǐtS sttntj ltitt jKt jKttct ctīt` cÙtctmittı5. o¸iOt uāt˙ ct`ī t˜ǐtS vttt˜Ytctīt`Ùt Mtt˜òtī ctīt` sttctMÙtctīltt (yt) Yttjlt ctīt` vttt˜Ytctīt`Ùt GFtǐtt˜yOtÙtt˙ı (mt) vttt˜Ytctīt`ct˛īlt t˜ctÕt ctW Yttjlt ct`ī vttt˜Ytctīt`Ùt t˜ctctīǐFtı 14. t˜nvo
o¸iOt GlFttovt ØttˆÅtt`t˜itctât` : 1. o¸iOt ØttˆÅtt`t˜itctât` : «ttctt`Ct o¸iOt uttFlt ctījvt`, ctīÛÛt` otOt ct`ī Sctī$tt`ctījCt ltitt ÙttlttÙttlt ctīt` cÙtctmitt, ctīÛÛt` otOt ctīt it¸Ct ctntmttitj ltstt Yttjlt mt¸j#tt nttn*tlttu˙ : (⭲t) t˜nvo ctntmttitj #t`$t ctW ltitt Gmtct`ī Ûtlt¸t˜o‘ctī t˜ctetcttvt vttltt˜ptctī Ftt˜jct`Mtı (yt) t˜nvo ctntmttitj #t`$t mt` Ftjt`#tCt ltitt ßt`Ctt`ctījCt ›tīt`ct, ctct:Ktt˜vtÙtt˙ otOt ltitt mtcFttCt‘ otOt ctīt it¸Ctt`Ùt YtC[tjCt, utmt˙mctījCt Ft“t˜ct˙īit, YtC[tjCt, t˜ctltjCt, t˜ctFtCtvt ot`ut Sct˙ Gvtctīt mtcytt˜vOtlt Yttjlt ctīt` mt¸j#tt mtctmÙttÙtWı (mt) Yttjlt ctīt` mttct¸t˜õctī mt¸j#tt ltitt vtt“ mt“t˜vtctī Mtt˜òtī ct`ī ut#t`Ft n`lt¸ Fmtctīt` sttctMctīlttS˙ı 15. Yttjlt ctīt mtcFttCt‘ t˜vtÙt˙$tCt ltitt t˜vtcvtt˜ǐtt˜Ktlt otOt ct`ī Ftt“t˜°ctī it¸Ctı Fttmlt¸jt`ct˛īlt, cttvtctīt`ct˛īlt, št`v[, ot`njt, št`v[, t˜vtpt‘ctt´ct˛īlt, mtct«tt`ct˛īlt, Ft¸vtjt˜vtct‘lt, Ft¸vt‘mt˙Ùtt`t˜ptlt ltitt mt¸j#tt stt˜Ytzttvt ltitt utt˜ltj#tt lt“Ùttjt`ı 16. Yttjlt ctât` ⭲ttvltt˜jctâ mt¸j#tt : (⭲t) ntt˜vtctīj sttvltt˜jctī Ktltj` Sct˙ Ût¸vtt“t˜ltÙttW mttcttt˜ptctī ct vt˛pttltt`Ùt mtctjmtltt mt¸itt˜vOtlt otOt/mt˙ctOt‘ ltitt Gmtctīt utytvOt Ùtt`itnš‘ ont` ǐtmmtt` ltitt ßtt`KtC[, t˜ctt˜Otctī cttvtctī, mctÛÚltt mctÛÚ Sct˙ mt¸jt˜#tlt otOt ctīt` sttctMctīltt, otOt mt˙Ùt$t ctW ctīctt`, mttcutott˜Ùtctīltt YttuttÙtt` t˜ctYt`o, #t`$tctto, vt˛pttltt`Ùt jt°^ctto ctīt GoÙt, t˜vtyt‘ǐt Mttmtctīt`Ùt #tctltt Sct˙ jtptvtt`t˜ltctī stt˜mitjltt, jt°^t`Ùt ptt`ctvt ct`ī ctīt` mtFtītF‘ı n. o¸iOt GlFttovt ØttˆÅtt`t˜itctât` : o¸iOt GlFttovt pt“mt` ctct:Ktvt, Itt`, Ktt`ctt, Ú`vtt, Ftvtt`j, mt˙Itt˜vtlt, cttuFtt`ct˛īlt, Mt¸uctī otOt, t˜MtMt¸ sttntj, sttFm›tīt`ct t˜ctt˜ctOt #t`$ttW ctW cÙttFlt Yt,°tÛttj, ptvtmt˙KÙtt ctīt` stt˜ltMtÙt ct˛t˜æ ltitt mtt`ctt Fttj mt` nt`vt` cttǐt` vt˛pttltt`Ùt sttyt,ptvt, stmt¸j#tt ctīt` pt.[ ct`ī vFt ctW ǐtt`ittW ctīt` yt.{ltt` ltitt ct¸īǐFtīt` ct`ī t˜ǐtÙt` ctīÛÛt` FtotittX ctīt Ût¸vttct, Sctī$tt`ctījCt, GlFttovt, utmt˙mctījCt, YtC[tjCt, t˜ctltjCt ltitt t˜ctFtCtvtı o¸iOt GlFttotW ctīt Ftjt`#tCt, ßt`Ctt`ctījCt t˜ctīvlt¸ ct˙¸īt˜9lt stFt`#ttS˙, Fttt˜jt˜mitt˜ltctīt`Ùt stmt˙lt¸ǐtvt ltitt sttt˜it‘ctī mtctmÙttÙtWı (yt) Yttjlt ctW t˜vtcvt ltt`yt,ltt-mt˙Itut‘ (ǐtt` Fvš`t˜mtšt` ctīvtt˜Ft:ǐtct:š) ptcctt-ctīMctt`j ltitt ÛtÙtvt, ytt`0 sttF‘0 Smt0 Sct˙ Sitcttct‘ī t˜ctt˜Mt°ctījCt o¸iOt GlFtto ct`ī Ftt“utt˜Ctctī it¸Ct, it¸Ct t˜vtÙt˙$tCt t˜ctt˜Otctī cttvtctī, o¸iOt GlFtto ctīt utmt˙mctījCt ltitt ctītÙt‘ ltitt Fttctttˇòtj #t`$t ct`ī t˜ctMt`ut mt˙oYt‘ ctWı (mt) sttvltt˜jctī mt¸j#tt mtctmÙttÙttW ctīt` FtnÛttvt ltitt mt`vtt ct`ī utÙtt`it ctīt` oMttS˙: ltct‘ī-tc˜ tltct‘ī (o) mtctt‘itt`Ct jt°^t`Ùt
t˜vtÙtv$tCt ǐttitltı 3. o¸iOt GlFttotW ctât` ØttˆÅtt`t˜itctât` : ÚtÚ GlFtto, ÚtÚ, o¸iOt Mtct‘ījt ltitt ct`īmtt`vtı
FtMt¸Fttītvt uāt˙ FtMt¸t˜Ûtt˜ctâlmtt t˜āt%ttvt : t˜Éltt`*t ØtMvt Ftīt : Yttit ⭲t
mt¸j#tt vttltptt` ct`ī t˜ǐtS sttoMt‘ ltlctı
17. ØtytvOt
⭲t. ⭲ttvt¸āt˙t˜Mtctât` uāt˙ FtMt¸ Øtūtvtvt : 1. FtMt¸ ⭲ttvt¸āt˙t˜Mtctât` : mtcmtt$tCt Sct˙ stOt‘mtt$tCt t˜ctYttptvt, ct`C[`t˜ǐtÙtvt ct˙Mttitt˜lt sttvt¸ctt˙t˜Mtctīt` ctW Ftt˜jctlt‘vt, ptt`vttW ctīt` Ftjt`#ttt˜it‘ÙttW mt` stFt`#tt ctīt` pttltt` n“ t˜ctī ct` utytvOt ct`ī t˜ctt˜Yt÷t Ftnǐt¸sttW mt` Ftt˜jt˜Ûtlt ntWit`ı ct` t˜mtætvlt ctīt` cÙtctntj ctW t˜ctÕt cÙtctmttÙt ct`ī mt˙oYt‘ ctW, mttcttvÙtltt: stt˜YtcÙtt˜òtī, mtnǐtivtltt, Sct˙ t˜ctt˜vtÙtct, t˜ǐt˙it, utYttt˜ctlt Sct˙ t˜ǐt˙it mtct`t˜ctlt ǐt#tCt, jòtī mtcttn Sct˙ ytn¸vFtltt, it¸Ctmtt$t t˜ctFtitvt, ptt`vt ltitt Gmtctīt` mt˙jÛtvtt, stt“j Yttjlt ctW cÙtctmttÙt ct`ī t˜ctt˜Mt° mtvoYt‘ ctW ǐttitt ctīj mtctWīit`ı Fmtct`ī t˜ǐtS Gvtmt` sttMtt ctīt` pttltt` n“ t˜ctī ct` Gmt cttlttctjCt mt` t˜ptmtctW Yttjlt ctW cÙtctmttÙt [t`0 Svt0 S0 Sct˙ sttvt¸ct˙t˜Mtctī õcÙt, sttvt¸ct˙t˜Mtctī cttīš Sct˙ utt`št`vt mt˙Mǐt`utCt, Ft¸vt: mt˙Ùtt`t˜ptlt [t`0 Svt0 S0 ltctīvtt`ctīt`, GlFtt˜jctlt‘vt, GlFtt˜jctlt‘vt ct`ī utctītj, nt`ltt n“, Ytǐtt`--Ytt˙t˜lt Ftt˜jt˜Ûtlt ntWit`ı GvnW t˜ctt˜Yt÷t t˜›tīÙttlctctī #t`$ttW ctW t˜ctMǐt`utCt stt“x x˜vtCt‘Ùtvt ctīt` utytvOtctīt`Ùt t˜ctt˜OtÙttW ct`ī zttvt ct GFtÙtt`it ct`ī mttOtvttW ctīt` GlFtt˜jctlt‘vt Sct˙ GlFtt˜jctlt‘vt oj zttlt ctījvt` ctīt` t˜ctt˜OtÙtt˙ı n. mtctt˜° ⭲ttvt¸āt˙t˜Mtctâ ctât FtMt¸ Øtūtvtvt ctW ⭲tvt¸Øt*tt`it : ctt$ttlctctī utt˜lt (ytvttct) it¸Cttlctctī ǐt#tCt, pttvtctītjt` Ytt` nt`itt`ı
nt[t´cttFvtctit‘, t˜vtÙtct, mtctt˜° utt˜lt (ytvttct) cÙtt˜òtīitlt ptt`vt Sct˙ ptt`vt utctīct sttct˛t˜òt, ptt`ctvt sttct˛t˜òt ctīt` Ftt˜jctt˜lt‘lt ctījvt` cttǐt` ctītjctī, sttctīt˜mctctī œtt`lt ØtytvOt: Øtstct ØtMvt Ftīt
ltitt ǐtIt¸ mtctt˜°, st˙lt: utptvtvt it˙Cttctī zttlt ctījvt` ctīt` t˜ctt˜OtÙtt˙, stvlt: utptvtvt ctīt` Ftæt˜ltÙtt˙, #tctlttMttǐtt` mtctt˜° Ftt˜jCttct, utptvtvt cttǐÙt zttlt ctījvtt, 1. Øtyt˙Ot ⭲ttātOttjCtt uāt˙ t˜ātctâtmt : utyt˙Ot ctīt` stctOttjCtt Sct˙ ctnlct utytvOt-- t˜ctzttvt Sct˙ ctīǐtt, Ft`Mt` ct`ī vFt ctW, utytvOt Sct˙ utMttmtvt ctW stvltj, utytvOt ctīt` utt˜ltYttt˜ctlt Sct˙ utytǐtltt t˜ctÛtǐtvt, t˜ctt˜Yt÷tltt ctīt t˜ctYttptvt ptt`vt, utct˙īFtt` cttlttctjCt mtnmt˙yt˙Ot ltitt ptt`vtvFtt` cttlttctjCtt`Ùt stvÙtt`vÙtt˜›tīÙttı 3. Øtūtvtvt Ftæt˜lt Yttt˜ctctīt Sct˙ Gòtjott˜Ùtlct, utytvOt ct`ī t˜mtætvlt, utytvOt t˜ctctītmt-- utt˜ltt˜‰lt mcttīǐt, vtct--utt˜ltt˜‰lt mcttīǐt, sttOt¸t˜vtctī utytvOt mcttīǐt,utytvOt ct`ī t˜ctætvttW ctīt
: ct˙Mttitt˜ltlct, sttct˛t˜òt, sttvt¸ct˙t˜Mtctī ltitt ÂMÙt vFtt` mtnmtcytvOt ltitt Fvtctīt` uttct:ctīǐtvt ctīt` t˜ctt˜OtÙtt˙ stt“j sttitCtvt ctīt` Ùtittit‘ltt, ctjCt ct`ī t˜ǐtS mtntÙtltt Ùtt`itotvtın. t˜vt*tt`ūtvt uāt˙ t˜vtCt‘*tvt : t˜vtÙtt`ptvt--utct˛īt˜lt, utctītj ctnòtt Sct˙ mtt`cttÙtW, mt˙it9vt ct`ī Gö`MÙt, Sct0 ytt`0 stt`0 Ùtt`ptvtt ct`ī Gö`MÙt, vtt`t˜ltÙtt˙, t˜vtÙtt`ptvt ltitt Gvtct`ī mtcytt˜vOtlt ǐttYt, cÙtt˜òtīitlt ct˙Mttctǐtt`, Fttt˜jcttt˜jctī ltitt stvlt: Fttt˜jcttt˜jctī ÛtÙtvt, mt˙ltt˜lt Ftjt`#tCt, ctjCt ctīt` t˜ctt˜OtÙtt˙, ctjCt ctīt sttOttj, ctjCt sttOttj Sct˙ Fttctt‘vt¸cttvt ctīt` ltctīvtt`ctī, t˜vtCt‘Ùtvt utctītj, utt˜›tīÙtt, t˜ctct`ctīFttCt‘ t˜vtCt‘Ùtvt Fmtctīt` mtt`cttÙtWı 3. mt˙it9vt uāt˙ mt˙it9vttlctctâ ā*tātntj : mt˙it9vt-- ct`ī utt˜xx xxx˜ltt˜›tīÙtt stt“j Gmtctīt Ftt˜jcttFt, ctjCt Yt`ot`Ùt, utptvtctī mtt˙[, mttÛtctī ctjCt mttÛtctī, sttctltt´ Sct˙ lÙt¸lt›tīct sttctltt´ctjCt, vtÙtt` FtMt¸ utpttt˜ltÙttW ctīt` mittFtvtt, stctOttjCtt, utYttt˜ctlt ctījvt` cttǐt`, ltlct t˜ctYttitt`ctījCt ltitt t˜›tīÙttsttW ctīt sttyt˙švt, utytvOt ctīt t˜ctmlttj, stt˜Otctītj Sct˙ Gòtjott˜Ùtlct, stt˜Otctītj--stit‘, utctītj,
stvlt: utptvtvt, ytt˜n: utptvtvt, ›tīctt`÷tt˜lt, utmt˙ctījCt mt˙ctījCt ltitt t˜Yt÷t mt˙ctījCtı vttlt,` sttO˜ tctītj ctīt` mcttctītlt,˜˛` sttO˜ tctītj ctīt utlÙttp` tvt-- stit‘ tm˜ tætvlt Sct˙ utlÙttÙttptv` t ctī` cttit,‘ ctW stctjtO` t, sttO˜ tctītjtW ctīt ctī` võtÙtctī` jCt Sct˙ tctctī`˜ võtctīj` Ct,
yt. māttms*t uāt˙ mātÛÚltt : 1. yt“ǐt Sct˙ ct¸itt´ ctīt` Mtjt`j jÛtvtt, vltctīt`Ùt ltctīvtt`ctī, utMtt`ltvt Fǐt`t˜[˙it sttt˜o,jòtī ctīt` t˜Ftīǐct ytvttvtt ltitt Gmt` j˙t˜ptlt ctījvttın. mt˙it9vttlctctī cÙtctntj-- stctOttjCtt Sct˙ ctnòtt, cÙtt˜òtīitlt Sct˙ mttcttt˜nctī cÙtctntj, mt˙it9vttlctctī Ftt˜jctlt‘vtı4. t˜vto`Mtvt : t˜vto`Mtvt--stit‘ t˜mtætvlt Sct˙ vltctītW ctīt` j˙itvt` ct`ī t˜ǐtS utct¸Kt j˙ptctī ltitt ittÙt ctīt Ytt,Ct t˜ctzttvtı 3. mcttmiÙt Sct˙ jt`it ctW jòtī Sct˙ Gmtctīt Ftt˜jmt˙ÛtjCt, FttÛtvt, Mctmtvt, Glmt‘vt, stvlt: œttctt` ltctīvtt`ctWī, stt˜Ytut`jCt-- t˜mtætvlt, ct“mǐtt`, nmt‘ytit‘ ct“ctī«t`itj, ct“ct:mtt`ǐt“[ ltitt stvÙt t˜ctÉtvttW ct`ī Ùtt`itotvt, vt`lt˛lct--stit‘, ctītÙt‘ utctītj Sctī mtFtīǐt vt`ltt ct`ī it¸Ct,
«tt˜vit ctīt Mtjt`x x˜›tīÙtt t˜ctYttptvtı 4. stt“utOt t˜ctzttvt ltitt jmttÙtvt t˜Ûtt˜ctīlmtt ctīt mttcttvÙt zttvtı 5. ptǐt, cttÙt¸ ltitt jnvtmtnvt ct`ī mt˙oYt‘ ctW FtMt¸t˜Ûtt˜ctīlmtt vt`lt˛lct ct`ī t˜ctt˜Yt÷t t˜mtætvlt, mt˙ut`utCt--stit‘,utctītj ltctīvtt`ctWī, mtcut`utCt mtcyt˙Xxx` stctjt`Ot, utYttctctītjt` mt˙ut`utCt ct`ī GFttÙtı5. t˜vt*t˙ītCt uāt˙ mtctv*tāt : t˜vtÙt˙$tCt-
mcttmiÙt t˜ctzttvt, 6. o¸iOt mctÛÚlttı
Yttit-yt
- stit‘, utt˜›tīÙtt utYttctctītjt` t˜vtÙt˙$tCt ctīt` Fttct‘ oMttÙtW t˜vtÙt˙$tCt ctīt` t˜ctt˜OtÙtt˙--ytptšjt` ltitt it“j--ytptšjt`, mtctvctÙt--t˜mtætvlt, ltctīvtt`ctWī ltitt mtctvctÙt
mtcytvOtt` stctjt`Otı 6. ā*tātmttt˜*tctâ Ft*tt‘ātjCt : cÙttctmttt˜Ùtctī FtÙtt‘ctjCt ctīt` stctOttjCtt Sct˙ ctnlct, cÙtctmttt˜Ùtctī FctītF‘ ltitt FtÙtt‘ctjCt ctW stvltmtcyt˙t˜Otlt
mt. FtMt¸ jt`it : 1. utt˜ltj#tt Sct˙ št`ctītctījCt t˜ctt˜Mt° jt`ittW ct`ī utt˜lt FtMt¸sttW ct`ī utt˜ltj#tCt n`lt¸ t˜mtætvlt Sct˙ t˜ctt˜OtÙtt˙, Ùttit utt˜ltj#tt, jt`it jt˜nlt #t`$t, MttvÙtjt`it cÙtctmttÙt ct`ī mttcttt˜ptctī Gòtjott˜Ùtlct, cÙtctmttt˜Ùtctī vtt`t˜ltMttvt, stt“ett`t˜itctī vtt`t˜lt, ctt“t˜õctī vtt`t˜lt, jtptctīt`utt`Ùt vtt`t˜lt, t˜cto`Mtt` Ft˙tptt` ltitt t˜cto`Mtt` mtnÙtt`it, Ftt˜jctīǐFtvtt, jt`itnj jmttÙtvtı n. itt*t, YtQmt, YtW[ ltstt ytctâjt` ct`â jt`it : t˜vtcvtt˜ǐtt˜Ktlt jt`ittW ctīt ctītjCt, ǐt#tCt, t˜vtotvt jt`ctīittct ltitt t˜Ûtt˜ctīlmtt : ptnjt` Yttjlt ctW ytn¸jt°^t`Ùt ctīcFtt˜vtÙtt˙ sttt˜it‘ctī Mtt˜òtī ctīt ct`īvõt`ÙtctījCt, Sctītt˜Otctītj Ftj t˜vtÙt˙$tCtı
yt¸Kttj, itǐttIttWšt, ǐt˙itt˜.[Ùtt˙, itvt“ǐtt`, ltFt`t˜octī, ptt`vmt ytt`cttjt`, Kt¸jFtctīt Sct˙ ct˙n¸ Ftctīt, Ftt`ctītFtt`ctīvtt`, j`ytt`pt, FttFjt`Fǐttptctt`t˜mt, mtjt‘, pt¸ctīvtt jt`it, o¸iOt pctj, ØtytvOt:tɘ ltt`*t ØtMvt--Ftīt
stFtījt Sct˙ vtctpttlt ytÚ.[tW ct`ī jt`itı 3. ct¸âctäct¸âš ct`â jt`it : jtvtt`Kt`lt jt`it, ct¸īct:ct¸īš Mtt`ltǐtt jt`it, Ftt˜#tÙttW ctīt Mct`ltjòtītCt¸ ptt˜šǐtltt jt`it, ct“jct:mt jt`it ltitt KtC[ 1--t˜ātFtCtvt Øtyt˙Ot-- t˜ctFtCtvt ctīt` stctOttjCtt stt“j ctītÙt‘, t˜ctFtCtvt t˜ctßtCt t˜ctFtCtvt t˜ctYtt˜òtīctījCt stt“j , GlFtto t˜ctYt`o, GlFtto mt˙Mtt`Otvt stt“j GlFtto itctytt`jt` jt`it ctīt ctītjCt, ǐt#tCt, t˜vtotvt jt`ctīittct ltitt t˜Ûtt˜ctīlmttı 4. mt˛ctâj ct`â jt`it : mttctīj-pctj ltitt mttctīj ctītǐtjtı 5. Māttvt jt`it : Mcttvt t˜[mš`cFtj ptt`ctvt Ût›tīı GFtYtt`òtīt stt˜Ytut`jCtt stt“j cÙtctntj ctt˙it uttct:ctīǐtvt, t˜ct›tīÙt mt˙ctOt‘vt, t˜ctzttFtvt t˜ct›tīÙtctīǐtt stt“x x˜ct›t`īlttsttW ctīt utyt˙Otvtı t˜ctFtCtvt stvt¸mt˙Ottvt ctīt`
Fttcttˇ, j`ytt`pt jt`it ltitt cttvtct mcttmiÙt mt` mtcytvOtı Yttc˜t tctīt sttj“ ltctīvttctī` , tctF˜ tCtvt stctī`˙ #tCt sttj“ tv˜ tÙt$˙ tCtı stvltjt°‘ ^tÙt` tctF˜ tCtvt ctW tv˜ tCtÙt--#t$`‘ tı Yttjlt ctW «ttcttC` t tctF˜ tCtvtı
o. FtMt¸ ītt`ctâ māttms*t : 1. pt¸vtt`t˜mtmt: ctitt´ctījCt, Ftt˜jYttutt, pt¸vt`t˜šctī jt`it ct`ī mittvttvltjCt ctW FtMt¸ Sct˙ Ft˙t˜ÚÙttW ctīt Ùtt`itotvt n. FtMt¸ t˜Ûtt˜ctâlmtt Otct‘MttŒt : KtC[ n--GlFttovt ØtytvOt : GlFttovt utyt˙Ot ctīt stit‘ Sct˙ utct˛īt˜ltı GlFttovt utCttt˜ǐtÙttW ct`ī utctītjı GlFttovt t˜vtÙttp` tvt stt“x x˜vtÙt˙$tCt t˜ctt˜Yt÷t utctītj ct`ī GlFttovt FtMt¸ jt`it ct`ī jt`ctīittct ltitt FtMt¸ ct`ī it¸CttW ctīt` mt¸Ottjvt` ct`ī t˜ǐtS t˜vtÙtct Sct˙ sttO˜ tt˜vtÙtctı FtMt¸ t˜Ûtt˜ctīlmtt t˜ctt˜Otctī Ftjt`#tCt n`lt¸ vtcttvtt ǐt`vt` ct`ī t˜ǐtS mtt˜›tī«tt ltitt utCttt˜ǐtÙttW ct`ī t˜ǐtS cttit‘ t˜vtOtt‘jCt, ǐtotvt stt“j stvt¸›tīctt`vmt, mt˙Ùt˙$t mittvt t˜vtOtt‘jCt Sct˙ mitǐt ÛtÙtvtı mt˙Ùt˙$t t˜ctvÙttmt stt“j mttct«tt` mttÛtt` t˜vtÙt˙$tCtı S0ytt`0mtt`0 t˜ctt˜OtÙtt˙ı 3. sttoMt‘ mctÛÚltt ctīt` Ftt˜jt˜mitt˜ltÙttW ctW FtMt¸ ctOtMttǐtt mt` ctt˙mt GlFttovt n`lt¸ FtMt¸ t˜Ûtt˜ctīlmtctī ct`ī ctīòt‘cÙt Sct˙ Yttt˜ctctītı 4. ctOtMttǐtt mt` uttFlt GFtt`lFtto t˜ctMǐt`utCtı sttt˜it‘ctī stto`Mt ctt$ttı Ft¸vtstt‘o`Mt t˜ytvo¸ stt“j mt¸j#tt mšt˘ctīı jo˛ot` ctīt utytvOtı
ltitt Gvtctīt sttt˜it‘ctī GFtÙtt`itı 5. stvlt: œttctt` «tt˜vit ctīt` octt ct`ī GFtÙtt`it ctW ǐttvt` ct`ī t˜ǐtS, Sctī$tt`ctījCt, Ftt˜jj#tCt Sct˙ ut›tīctt`ctījCt ctīt` t˜ctt˜OtÙtt˙ı KtC[ 3 tā˜ tòtt`*t ØtytvOt : stit‘ Sct˙ #t$` t, Ftīct‘ ctīt` tctòtt˜ `Ùt sttctMÙtctīlttsttW ctīt stvtc¸ ttvt ǐtittvtt, FtptB tt` {t˙Ût` ctīt tv˜ tOtt‘jCt, FtpBt tt` ǐttitlt, ctītÙtM‘ tt`ǐt Ftp˘t˙ tt` ctīt
*t. Øtmttj : utmttj ct`ī t˜mtætvlt, OttjCtt, Gö`MÙt ltitt cttǐt oMt‘vt, «ttctt`Ct t˜ctīmttvttW ctīt` t˜Mtt˜#tlt ctījvt` ctīt` t˜ctt˜Yt÷t t˜ctt˜OtÙtt˙ı vtÙtt`, ltctīvtt`ctī ctīt t˜vtctt‘Ct,Gmtctīt sttctītj, ctītÙt‘Mtt`ǐt FtBtptt` ctīt` utyt˙Otctīt`Ùt t˜oMttÙtW, ot`It‘ctītvtt`vt ctīt`uttW ctīt utytvOtvt, Ftt˙ptt` yttpttj ctīt`uttW ct`ī mt˙mittitlt lt˙$t, Ftš˛š` ltitt GFtmt˙t˜ctot ctījvtt, t˜cttv˜ xXxx`it mittvttvltjCt ltitt Ft¸vt: cttǐÙtt˙ctīvt, vtÙtt` ltctīvtt`ctī ct`ī mittvttvltjCt ctW mtctmÙttS˙ Sct˙ yttOttÙtWı «ttctt`Ct t˜ctctītmt ct`ī t˜ǐtS FtMt¸Fttǐtvt utÙtt`ptvttÙtWı t˜vtCt‘Ùt t˜ctt˜vtÙtt`it cttǐÙtt˙ctīvt n`lt¸ cttFtoC[, t˜ctt˜vtÙtt`it t˜vtCt‘ÙttW ctW ptt`t˜Ktct t˜ctMǐt`utCtı Yttjlt ct`ī mtvoYt‘ ctW mttct‘ptt˜vtctī GFt›tīcttW ctW t˜ctòtt`Ùt utyt˙Otı
15. mtt˙t˜K*tctât` : ØtMvt Ftīt- Øtstct
Øttt˜*tctâltt t˜mtætvlt ltstt mtt˙t˜K*tctât` ct`â Øt*tt`it : KtC[ (⭲t)
KtC[ 4- cttvtāt mt˙mttOtvt ØtytvOt : cttvtct mt˙mttOtvt ctīt` utct˛īt˜lt, #t`$t Sct˙ Ytltt´ Sct˙ utt˜lt#tCt, t˜ctctītmt, Ftot`÷tt˜lt Sct˙ nmlttvltjCt, t˜vtuFttovt cttǐÙtt˙ctīvt, ctītÙt‘
cttǐÙtt˙ctīvt Sct˙ Ùtt`iÙtltt t˜vtOtt‘jCt, ctptotjt` Sct˙ ct`ltvt utMttmtvt ctīct‘Ûttjt` ctvtt`ytǐt Sct˙ stt˜Ytut`jCtt, stt“ett`t˜itctī ǐtt`ctīlt˙$t Sct˙ utyt˙Ot ctW ctīt˜ct‘ÙttW ctīt` mtnYttt˜itltt
uttt˜Ùtctīltt t˜mtætvlt utt˜ltoMt‘ mtctt˜° ltitt ItšvttS˙, uttt˜Ùtctīltt ctīt` t˜Ûtj utt˜ltt˜‰lt Sct˙ stt˜Ytit˛nt`ltt`Ùt Ftt˜jYttuttÙtW, uttt˜Ùtctīltt cttFt ct`ī it¸CtOtct‘, utt˜ltyt˙t˜Otlt mttcttt˜nctī mtt“o`yttptt`, stvt¸Mttmtvt Sct˙ t˜MtctītÙtlttW ctīt t˜vtcttjCt, mtctPtt“ltt Sct˙ stt˜Xxx˜vtCt‘Ùtvt, Yttjlt ctW ßtt˜ctctī mt˙Itcttoı
uttt˜Ùtctīltt, ItšvttsttW ctīt` stvttt˜ßtltltt yt`Ùtpt utct`Ùt ltitt Fmtct`ī utÙtt`itı ÙttÂt˜ÛÚctī Ûtj Sct˙ Fmtctīt yt˙švt Ftīǐtvt, yt˙švt Ftīǐtvt ct`ī cttǐt it¸CtOtct‘, stmtltlt Sct˙
18. jtūtvtt`t˜lt t˜āt%ttvt uāt˙ ⭲tvltjt‘°^t`*t mtcytvOt:ØtMvt Ftīt--1:
mtltlt ÙttÂt˜ÛÚctī Ûtj, t˜ÉÛtjt`Ùt yt˙švt ltitt mt˙yt˙t˜Otlt GFtt˙lt Sct˙ utt˜ltyt˙t˜Otlt yt˙švtı utlÙttMtt, sttIttCt‘ ptvtctī ltitt stt˜Ytǐt#tCt Ftīǐtvt, cttctītˇct ltitt Mt`ytt`Mt`ct Yttit--⭲t : jtūtvtt`t˜ltctâ t˜mtætvlt :1. jtptvtt`t˜ltctī t˜ctzttvt ctīt` utct˛īt˜lt Sct˙ t˜ctutÙt #t`$t, jtptvtt`t˜lt t˜ctzttvt ct`ī stOÙtÙtvt ct`ī t˜ctt˜Yt÷t GFttitct--FtjcFtjtitlt ltitt stmtt˜ctctīt, uttt˜Ùtctīltt ctW stt˜YtmtjCt, stvttt˜ßtlt Sct˙ mtctvFtt` yt˙t˜šlt ÙttÂt˜ÛÚlt ÛtjtW nl` t¸ ct˛nlt mt˙KÙttsttW ctīt t˜vtytǐt t˜vtÙtct ltitt ct`īvõt`Ùt mtt`ctt utct`Ùtı ct¸īÚ mtctmttctt˜Ùtctī-- cÙtctntjcttot`, cÙtctmitt t˜mtætvlt stt“j cttct:mt‘cttot` t˜mtætvltın. sttOt¸t˜vtctī jtpÙt ctīt` utct˛īt˜lt, utYt¸mtòtt ct`ī t˜mtætvlt, Mtt˜òtī, uttt˜Otctītj stt“j cttvtctī stmtltlt ltitt mtltlt yt˙švt Ùtitt t˜ÉFto, Fctt˙mtt, ntFFtjpÙttt˜ctltt`Ùt, pÙttt˜ctltt`Ùt, $tīCttlctctī t˜ÉFto, ytn¸Fto Sctīmtcttvt, utmttcttvÙt, Ûtj Ittltt˙ctīt`Ùt, ct“Otlttı 3. stt˜Otctītj, mctlt˙$tltt, mtcttvtltt stt“j vÙttÙt ct`ī t˜mtætvltı4. utpttlt˙$t ct`ī t˜mtætvlt 5. Gotjctto mttctptctto stt“j cttct:mt‘cttoı 6. jtptvtt`t˜ltctī oMt‘vt:
ittctt, ytt`št ltitt ctīt˘Mtt`ı t˜ÉÛtj utmttcttvÙt yt˙švtı
KtC[--yt
ctīt“t˜šǐÙt stt“j ctvt¸ Fǐt`št` stt“j stjmlt¸, mt˙lt štctmt Sct:ctt`vttmt, Ftto¸stt ct`ī cttjmtt`t˜ǐtÙttW ct“ct:Ùttt˜ctǐtt`, ntymt, ǐtt˘ctī stt“j vmtt` cttvš`mct:Ùtt, yt“vitct stt“j pt`0 Smt0
t˜ctǐt nt`itǐt stt“j «tt`vt, n`jtǐ[ pt`0 ǐttmctīt`, cttct:mt‘ ǐt`t˜vtvt stt“j cttstt“lmt` lt¸˙itı
mtt˙t˜K*tctât` ct`â Øt*tt`it : j“t˜Ktctī mtcttßtÙtCt ltitt mtnmt˙yt˙Ot, sttIttCt‘ it¸Ctvt mtnmt˙yt˙Ot, ctīt`t˜š mtnmt˙yt˙Ot, st˙ltctit‘ mtnmt˙yt˙Ot ltitt mtnmt˙yt˙Ot stvt¸Fttlt, ltt`vt ÛtjtW Yttit--yt : mtjctâtj ⭲ttˆj jtūtvtt`t˜lt-- Yttjlt ct`â t˜ātMt`<t mtvoYt‘ ctW : 1. mtjctâtj ct`â Øtctâtj--Sctītlctctī stt“j mt˙Ittlctctī mt˙mtot`Ùt stt“j xxXXx#ttlctctīı
n`lt¸ ytn¸ Sct˙ stt˙t˜Mtctī mtnmt˙yt˙Ot ltitt mtcttßtÙtı uttÙtt`t˜itctī stt˜YtctīǐFtvtt ct`ī t˜mtætvlt, utlÙt`ctī ctīt`‰ ctW ut`#tCttW ctīt` mtcttvt mt˙KÙtt cttǐtt Sctī --- t˜oMt Sct˙ t˜É- n. jtūtvtt`t˜ltctâ mt˙msttu˙--cÙtctmittt˜Ftctīt, ctītÙtt‘Fttt˜ǐtctīt stt“j vÙttÙt Fttt˜ǐtctīt, jtptvtt`t˜ltctī oǐt stt“j oyttct it¸š, t˜vtctt‘Ûtvt utCttǐtt`, sttOt¸t˜vtctī mtjctītj ctW
--t˜Mt utmtjCt t˜ctMǐt`utCt, FttCt‘lt ÙttÂt˜ÛÚctīt`ct˛īlt stt˜YtctīǐFtvtt, ÙttÂt˜ÛÚctīt`ct˛īlt KtC[ctī stt˜YtctīǐFtvtt, ǐt“t˜švt ctit‘ stt˜YtctīǐFtvtt, 22 ltitt 23 ytn¸GFttotvtt` utÙtt`it, vtt“ctījMttnt` ctīt` Yttt˜ctctītı3. jtūtvtt`t˜ltctâ Xxx˜›tâ*tt--jtptvtt`t˜ltctī mt˙mct˛īt˜lt, jtptvtt`t˜ltctī mtcttptt`ctījCt sttOt¸t˜vtctīt`ctījCt stt“j jtptvtt`tl˜ tctī t˜ctctītmtı 4. Yttjltt`*t stuttFlt #t`$t ctīt` uttt˜ctt˜Otctīı ptvtt˙ctīctīt`Ùt stt˙ctī.[tW ct`ī œtt`lt, t˜mitlt Sct˙ mittctj mtctt˜°Ùtt˙, utptvtvt ltitt ctlÙt‘ltt ct`ī cttFt, ptt`ctj mtjCtt`, mttcttvÙt mtctt˜° ct˛t˜æ jtūtvtt`t˜ltctâ ā*tātmstt (⭲t) Yttjltt`*t jt°^ātto ctât ⭲tY*t¸o*t-- itt`Ktǐt`, t˜ltǐtctī, ctntlctt itt˙Xxx`, ptcttnj ǐttǐt vt`nv, t˜pt÷tt stt“j ytt`0sttj0 stcyt`[ctīj ct`ī uttvFt ltitt mtctt˜° ut#t`FtCt uttt˜ctt˜OtÙtt˙ı mttÛtctīt˙ctī ltitt Fmtct`ī GFtÙtt`it, ǐt“mtt˜FtÙtj, FttMt`, cttMt‘ǐt, Sptctit‘ stt“x x˜FtīMtj ct`ī mttÛtctīt˙ctī, mttÛtctīt˙ctī n`lt¸ Ftjt`#tCt, mttcttt˜ptctī stt“j jtptvtt`t˜ltctī t˜ctÛttjı (yt) Yttjltt`*t mt˙t˜ātOttvt-- ctt“t˜ǐtctī t˜ctMt`utlttS˙, cttǐt stt˜Otctītj, vtt`t˜lt t˜vtoˇMtctī ltlct, mt˙Itt`Ùt mtjctītj -- jt°^Ftt˜lt, cttǐÙt mttÛtctīt˙ctī ltitt ptt`ctj t˜vtctt‘n mttÛtctīt˙ctī ctīt` mt˙jÛtvttı ctītǐt ßt`Ctt` ltitt Fmtct`ī Itšctī, GFtvtt`t˜lt ltitt ctt“mtctt` mttÛtctīt˙ctī zttlt ctījvtt, sttctt˜lt‘ltt-- ct›tī utOttvtct˙$tt` Sct˙ ct˙t˜$tctC[ǐt, mt˙mto stt“j GÛÛtltct vÙttÙttǐtÙt: jtpÙt mtjctītj, jtpÙtFttǐt ctīt` t˜mitt˜lt stt“j Mtt˜òtīÙtt˙, ct`īvõ jtpÙt mtcytvOt, mittvtt`Ùt mcttÙtòt
ltitt mtnmt˙yt˙Ot- t˜Ût$t t˜ctMǐt`utCt, t˜ctÛtjt˙ltj t˜ctt˜Otı
mtt˙t˜K*tctât` : ØtMvt Ftīt- t˜Éltt`*t
Mttmtvt Ft˙ÛttÙtltt` jtpÙt ct`ī t˜ctMt`ut mtvoYt‘ ctWı (mt) Yttjltt`*t jtūtvtt`t˜ltctâ Xxx˜›tâ*tt-- jtptvtt`t˜lt ctW pttt˜lt, #t`$tctto, Yttuttctto stt“j mttcutott˜Ùtctīlttctto,
jtptvtt`t˜ltctī oǐt stt“j oyttctit¸šı Yttjltt`Ùt jtptvtt`t˜lt ctW t˜n˙mtt, jt°^t`Ùt Sctīt`ctījCtı
mtt˙t˜K*tctât`*t ⭲tvt¸ctt˜lt ltstt ØtytvOtvt KtC[- ⭲t mtt˙t˜K*tctât`*t ⭲tvt¸ctt˜lt
jtūtvtt`t˜lt t˜āt%ttvt uāt˙ ⭲tvltjt‘°^t`*t mtcytvOt: ØtMvt Ftīt-n:
sttctīǐtctītW ct`ī it¸CtOtct‘, mt˙itltltt, stvtt˜Ytvtltltt, o#tltt, FtÙtt‘FÙtltltt ltitt FttCt‘ltt, ›t`īctj jtct Ftt˜jyt˙Ot vÙttvtltct utmtjCt stvtt˜Otvtlt sttctīǐtvt-jtct-yǐt“ctīct`ǐt Yttit--⭲t : 1. ⭲tvltjt‘°^t`*t mtcytvOt ⭲ttˆj ⭲tvltjt‘°^t`*t jtūtvtt`t˜lt : Ftt˜jYttutt, utct˛īt˜lt ltitt #t`$tı n. ⭲tvltjt‘°^t`*t jtūtvtt`t˜lt ct`â t˜mtætvlt : Ùtittit‘cttot`, utct`Ùtı sttctīǐtvt t˜ctt˜OtÙtt˙ sttIttCt‘ t˜ctt˜Ot ltitt stt˜Otctīltct mt˙Yttt˜ctltt t˜ctt˜Ot, sttctīǐtctītW ct`ī it¸CtOtct‘, st˙ltjtǐt sttctīǐtvtı mtjǐt Sct˙ mt˙Ùt¸òtī Ftt˜jctīǐFtvtt, $t¸t˜šÙttW cÙtctmittlctctī ltitt t˜vtCt‘Ùt t˜mtætvltı 3. t˜āto`Mt vtt`t˜lt ct`ī t˜vtOtt‘jctī ltlct jt°^t`Ùt t˜nlt, ct“Ûttt˜jctīt`, jt°^t`Ùt Mtt˜òtī ct`ī ltlctı 4. jt°^ātto ⭲ttˆj mttct,tū*tātto ct`ī ot` utctītj, ›tīt˙t˜ltctī ßt`$t, mttit‘ctīltt mltj, Ftt˜jCttct Sct˙ Mtt˜òtī Ftīǐtvt-- stvtt˜Ytvtlt Ftjt`#tCt, Mtòtīct stt“j Sctī mtcttvtlt: Mtòtīct Ftjt`#tCt, vt`ct`vt--- t˜FtÙtmt‘vt : t˜vtvFtt˜vtct`t˜Mtltt, vtct-- GFtt˜vtct`Mtctto ctīt XxXxx 5. t˜cto`Mt vtt`t˜lt ct`ī ÛtÙtvt ct`ī vFt ctW Mtt˜òtī mt˙lt¸ǐtvt, ctlt‘cttvt mtctÙt ctW Fmtctīt` uttmt˙t˜itctīlttı 6. Mtt`lt *t¸æ utct`t˜jctīt ltitt Fmtct`ī utÙtt`it mt˙Yttt˜ctlt-- stvt¸Fttlt Ftjt`#tCtı t,x2, z stt“x x yt˙švttW Ftj sttOttt˜jlt Ftjt`#tCt, ct˛nlt utt˜ltoMt‘ Ftjt`#tCt, utmtjCt mittÙtt`ctījCt : ltvttct Mt“t˜itlÙt, vtct--Mtt`lt Ùt¸æ mtctmttctt˜Ùtctī t˜ctÕt cÙtctmittı 7. vtÙtt` stvltjt‘°^t`Ùt sttt˜it‘ctī cÙtctmitt stt“j Fmtctīt ctnlctı 8. stvltjt‘°^t`Ùt mtcytvOttW ctW vFtt˙ltjCtı ›tīct utt˜ltoMt‘pt ltitt Ftjtmt ctīt yt˙švt, stuttÛtǐtt`Ùt Ftjt`#tCt Ùtitt t˜Ûtvn Ftjt`#tCt, cttt˜OÙtctīt Ftjt`#tCt, jvt Ftjt`#tCt, t˜ctǐctītct:mtvt-- cttct t˜nctšvtt` stvltjt‘°^t`Ùt t˜ctt˜Ot ctīt` Yttt˜ctctītı 9. stvltjt‘°^t`Ùt jtptvtt`t˜lt ctW jtptvtÙt ctīt` Yttt˜ctctītı 10. ⭲tvltjt‘°^t`*t mt˙it9vt : mt˙Ùt¸xxx xx°^ mt˙it9vt Sct˙ Gmtct`ī stt˜YtctījCt,
Ftjt`#tCtı
KtC[-yt mtt˙t˜K*tctât`*t ØtytvOtvt
stvltjt‘°^t`Ùt vÙttÙttǐtÙt, stvltjt‘°^t`Ùt mtcytvOttW ctW mt˙Ùt¸xxx xx°^ ctīt` Yttt˜ctctītı 11. #t`ītt`*t mt˙it9vt : stt`0S0Smt0, stt`0S0Ùtt0, stjytǐtt`it, mttct‘ī, sttt˜mtÙttvt,
F‘0F‘0mtt`0 stt“j stvltjt‘°^t`Ùt mtcytvOttW ctW Fvtctīt` Yttt˜ctctītı 1n. MtŒt mFtOtt‘ : FttjcFtt˜jctī stt“j FtjcttCt¸ctt`Ùt t˜vtMtvtt`ctījCt ct`ī utÙtv$t, stt“j Mtvt t˜vtÙt˙$tCt FtjcttCt¸
mt˙t˜›tīÙtt t˜ctzttvt mtctmÙttsttW ct`ī utct˛īt˜lt, j“t˜Ktctī utt`«ttct mtctmÙtt ltitt mtjǐt Ftt˜jtm˜ itt˜ltÙttW ctW sttj`Ktt`Ùt nǐt, t˜mtcFǐt`ct:mt t˜ctt˜Ot, j“t˜Ktctī utt`«ttctvt mtctmÙtt ctīt Mtt˜òtī ctīt stvltjt‘°^t`Ùt jtptvtt`t˜lt Ftj utYttctı 13. ⭲tmt˙ītivtltt, Go˛Ytct, Yttt˜ctctīt Sct˙ mtctmttctt˜Ùtctī stvltjt‘°^t`Ùt mtcytvOttW ctW Fmtctīt` uttmt˙t˜itctīlttı
É“lt, sttct˙švt Sct˙ Ftt˜jctnvt mtctmÙttı MttvÙt-- Ùtt`it t˜Écttvtctt`Ùt ›tīt`.[t, Mt¸æ Sct˙ t˜ctt˜ßtlt Ùt¸t˜òtīÙtt˙, ›tīt`.[t ctīt cttvt, cttǐtYttlt utct`Ùt 2x2 ›tīt`.[tsttW ctīt nǐtı Yttit--yt :1. mt˙Ùt¸òtī jtpÙt stct`t˜jctīt, vmt stt“j Ûtt`vt ctīt` t˜cto`Mt vtt`t˜ltÙtt˙ı n. Yttjlt ctīt` t˜cto`Mt vtt`t˜lt ltitt stctjt`ctīt, vmt stt“j Ûtt`vt ct`ī mttit Gmtct`ī mtcytvOt utt˜ltoMt‘ mtctˇ#tCt ctīt` utct˛īt˜lt Sct˙ cÙttt˜Flt, utt˜ltÛtÙtvt ytvttct mt˙FttCt‘ itCtvtt, Ftt˜jt˜ctlt mtctt˜°ÙttW ctW utt˜ltmittFtvt jt˜nlt ltitt utt˜ltmittFtvt mtt˜nlt mtjǐt ÙttÂt˜ÛÚctī 3. Yttjlt stt“j Gmtct`ī Ft.[t`mtt` jtpÙtı 4. Ftt˜§tct St˜MtÙtt, ot˜#tCt St˜MtÙtt stt“j ot˜#tCt Fttct‘ St˜MtÙtt ctW #t`$tt`Ùt mt˙Itut‘ Sct˙ mtnÙtt`itı 5. lt˛ltt`Ùt t˜ctÕt stt“j stvltjt‘°^t`Ùt utt˜ltÛtÙtvtı mltt˜jlt utt˜ltÛtÙtvt ltitt sttyt˙švt t˜mtætvlt, mtcttvt Ftt˜jCttct ct`ī it¸ÛÚ n`lt¸ it¸ÛÚ utt˜ltÛtÙtvtı sttctīǐtvt ctīt` stvt¸Fttlt, it¸Ctvt Sct˙ mtcttßtÙtCt t˜ctt˜OtÙtt˙ mtcytvOttW ctW Fmtctīt` Yttt˜ctctītı Gòtj--ot˜#tCt mt˙cttoı ot˜#tCt--ot˜#tCt mtnÙtt`itı 6. t˜nvo ctntmttitj : mtctmÙttS˙ stt“j mtcYttctvttS˙ı
ltitt t˜æMt: utt˜ltÛtÙtvt, mtcttvt utitct ÛtjCtt`Ùt FctītFÙttW cttǐtt` t˜ÉÛtjCtt`Ùt utt˜lt ÛtÙtvt, ›tīctytæ utt˜lt ÛtÙtvtı mtt˙t˜KÙtctīt` it¸Ctltt t˜vtÙt˙$tCt, ÛtjtW ltitt utit¸CttW 19. Ftl˜ tntmt: ØtMvt Ftīt--1 (KtC[ ctâ)
n`lt¸ t˜vtÙt˙$tCt- Ûttš‘ (X.R). (X.a)p.n.p ltitt c Ûttš‘ mctt`ct˛īt˜xx xxx˜ltÛtÙtvt, oc,ASN ltitt ATI ct›tī GlFttoctī ltitt GFtYtt`òtīt ptt`t˜Ktct, AQLAOQL 1. Yttjltt`Ùt Ft˜ltntmt ct`ī sttj˙t˜Ytctī ctītǐt ct`ī stOÙtÙtvt ct`ī œtt`lt Sct˙ Ât˜°ctīt`Ctı n. sttj˙t˜Ytctī FtMt¸ÛttjCt Sct˙ ct˛īt˜ut mtct¸otÙt, Ft¸jtlttt˜lctctī mtt#Ùtı 3. t˜mtvOt¸ ltitt LTPD ctīt` stctOttjCtt, Sctīǐt ltitt t˜æMt: utt˜ltÛtÙtvt Ùtt`ptvttı mtt`Fttvt-- utt˜ctīÙttS˙ Ftjt`#tCt-- ctotW ctīt mtt`Fttvtt`ctījCt, Ftjt`#tCt mtct˙ctī, it¸Cttlctctī t˜vtCt‘Ùt, mtYÙtltt: Fmtct`ī Goitct ltitt utct˛īt˜lt Sct˙ ntmtı 4. Yttjlt ctW (2000 F‘ Fttct‘ mt` 500 F‘ Ftt ltctī) ytmltt` ctīt mctvFt, stit‘cÙtctmitt, mttcttt˜ptctī mt˙it9vt ctīt Otct‘: Ftjt`#tCt--t˜mtætvlt, mtcttvttvltj Ftjt`#tCt,mtlÙt mtct˙ctī, Ftjt`#tCt ctīt` t˜ctÕtmtvtt`Ùtltt ltitt ct“Otlttı Ft¸jtlttt˜lctctī Ftt˜jut`#Ùtı 5. Gòtj Yttjltt`Ùt mtcttpt ltitt mt˙mct˛īt˜lt ctīt t˜ctctītmt:ct“t˜octī «t˙ittW ctīt mtt#Ùt (mt˙t˜nlttsttW mt` mtt$ttW ltctī)ı 6. ctntctt`j ltitt yt¸æ ctīt`` t˜Mt#tt
16. j#tt ⭲tO*t*tvt : Øtstct- ØtMvt Ftīt Œttltt˜ūtctâ t˜ātÛttjtW ctât t˜ātctâtmt- KtC[ ⭲t
mtctctītǐtt`vt mtcttpt jtpÙt t˜vtctt‘Ct ltitt vtitjt`ctījCt ct`ī uttj˙t˜Ytctī ÛtjCtı 7. ctitOt ctīt GoÙt: ctt“Ùt‘ mttct,tpÙt, stMtt`ctī ct`ī t˜Mtǐttǐt`Kt, Gmtctīt Otcct (Otct‘)ctt“Ùt‘
ctītǐtt`vt jtpÙt ctīt` utct˛īt˜ltı 8--9. Gòtjt` ltitt uttÙtÉt`Ftt`Ùt Yttjlt ctW ctt“Ùttˇòtj ctītǐt: jtptvtt`t˜ltctī Sct˙ utMttmtt˜vtctī Ft˜ltntmt, mtcttpt, stit‘cÙtctmitt, mt˙mct˛īt˜lt ltitt
1. mt˙‹t<t‘ ctât` mt˙ctâīFtvtt ltstt t˜mtætvlt: (⭲t) : cttvtct ct`ī mttcttt˜ptctī mtcytvOttW ctW mt˙ItuttX ctīt Go˛Ytct, «ttnÙtlttS˙, ut›tīct, ltt`›tt`ctījCt, ǐt#Ùt uttt˜Flt sttt˜o, Otct‘ ltt˜ctǐtnct Sct˙ Fmtctīt mtcttpt: mt˙itct «t˙itı 10--11. it¸Flt ctītǐt ctW ltitt it¸Fltt`òtj ctītǐt ctW Yttjlt (750 F‘0 ltctī) Gòtjt` ltitt uttÙtÉt`Ftt`Ùt Yttjlt ctīt
stvltjt‘°^t`Ùt mt˙Ituttˇ ct`ī mt˙oYt‘ ctW Fvtctīt` uttmt˙t˜itctīlttı (yt) mt˙‹t<t‘ *t¸æ ct`â ™Ft ctW : jtpÙt-- cÙtctntj, ctītjCt, mtnmtcytæ ctītjctī, Itj`ǐtt (sttvltt˜jctī) œtt`lt jtptvt“t˜ltctī Ft˜ltntmt, mttct˙ltt` cÙtctmitt ltitt jtptvt“t˜ltctī mt˙jÛtvtt ctW Ftt˜jctlt‘vt, stit‘cÙtctmitt, mttcttt˜ptctī mt˙jÛtvtt, mt˙mct˛īt˜lt, Otct‘ı 1n. sttj˙t˜Ytctī Yttjltt`Ùt YttctC[ǐtt`Ùt {t˙Ûttitlt œtt`lt, uttjcYt stt“j mtcttt˜Flt, t˜ctÛttj t˜ctctMt‘ Ùt¸æctīct‘ ctīt` Ftttj˜ t˜mitt˜ltctīt` FlÙttt˜oı (mt) *t¸æ ctât` mt˙ctâīFtvtt ltstt jtūtvtt`t˜lt mt` Fmtctât mtt˙mct˛īt˜ltctī Ft˜ltntmt ctīt` t˜ctutÙtctmlt¸: YttuttS˙ Sct˙ «t˙it: ctīǐtt ltitt mittFtlÙt ct`ī tc˜ tctītmt ct`ī utct¸Kt ÛtjCt, utct¸Kt otMt‘t˜vtctī t˜ctÛttjctī Sct˙ t˜ctÛttjOttjtS˙ t˜ctzttvt mtcytvOt : ct`t˜ctīÙttct`ǐtt` mt` ǐt`ctīj vttt˜Ytctīt`Ùt Ùt¸it ltctī ct:ǐttt˜mtctīt`Ùt t˜ctÛttj ltitt utct˛t˜òtÙtt˙ı n (⭲t) ctâtˆt˜šī*t ctât *t¸æ : oMt‘vt ltitt Gvtctīt œttltt˜ptctī: Ùtt`itotvtı ltitt itt˜Ctlt mt˙yt˙t˜Otlt t˜ctÛttjı
(yt) Ùt¸æ ct`ī yttj` ct` ˙mt¸vtlptt ct`ī t˜ctÛttjı (mt) vttltptt`, mttctt˜jctīt`, mt˙Yttt˜jctīt`, Ùt¸æ t˜mtætvlt stt“j Ùt¸æ ctīt` utct˛īt˜lt ct`ī yttj` ctW pttt˜ctvtt` ltitt ct:ǐttptt˜ctš˛pt ct`ī KtC[--Kt
t˜ctÛttjı 3. *t¸æ ⭲ttˆj ⭲ttˆÅtt`t˜itctâ mtcttūt --- cttct:mt‘ stt“j S˙t˜ptǐmt ct`ī t˜ctÛttjtW ct`ī mt˙oYt‘ ctWı 4. ›tât˙t˜ltctâtjt` *t¸æ ltstt it¸t˜jīītt *t¸æ ctâct‘ ctât` mt˙ctâīFtvtt ltstt 13. Yttjlt, 750 F‘0 1200 F‘0 ltctī: jtpt cÙtctmitt, mtcttpt Sct˙ stit‘ cÙtctmitt Gòtj Yttjlt ctW utct¸Kt jtptct˙Mt ltitt jtptvt“t˜ltctī mt˙jÛtvttS˙, ct˛īt˜utctī mt˙jÛtvttS˙, t˜mtætvlt --- ǐt`t˜vtvt, cttstt`lmt`lt˙¸it, Ût` icttjt, j`t˜itmt [`yt,tÙt stt“x x˜itÙttFt ct`ī t˜ctÛttjtW ct`ī mto˙ Yt‘ mtt˜nltı 5. mtˆv*t Mtt˜òtâ ct`â ⭲ttt˜st‘ctâ ⭲ttOttj : (⭲t) Ùt¸æ ctīt` Yttjltt`Ùt mttctvltctto, jtptFttlttW ctīt GoÙt uttÙtÉt`Ftt`Ùt Yttjlt ctW mttct,tpÙtcttot` Ûtt`ǐt Sct˙ Gvtct`ī mtctctītǐtt`vt Mttmtctī ot˜#tCt ctW «ttct mtct¸otÙt, t˜vtÙttW ctīt` t˜mitt˜lt, sttt˜it‘ctīt`ı (yt) t˜ctīmtt` jt°^ jtpÙt ct`ī cttt˜Ctt˜pÙtctī, t˜ctòtt`Ùt stt“ett`t˜itctī, sttt˜it‘ctī ltitt jtptvtt`t˜ltctī ----mt“t˜vtctī mtytǐtlttsttW ct t˜vtyt‘ǐtlttsttW ctW mt˙yt˙Otı (mt) Mtvt cttt˜CtpÙt, cÙttFttt˜jctī ctit‘ Sct˙ ßt`t˜CtÙtt˙, vtitj ct¸õt ctīt` mtctmÙtt stjyttW ctīt` t˜mtvOt t˜ctptÙt, itptvtctt` mttct,tpÙtı 14. Yttjlt 750--1200 F‘0 ltctī mt˙mct˛īt˜lt,
--cÙttFttj ltitt otltt-- uttFltctīltt‘ cÙtctntj t˜mtætvltı (o) Ùt¸æt`òtj stit‘cÙtctmitt ltitt Ft¸vtt˜vtctt‘Ctı 6. mstīt, mttct¸t˜õctâ ltstt ātt*t¸ *t¸æ ctâct‘ ct`â t˜mtætvlt mttt˜nlÙt, ctīǐnvt, Ft˜ltntmtctītj,ct˙t˜oj mittFtlÙt ctīt` Mt“t˜ǐtÙtt˙, cttt˜lt‘ctīǐtt, jtptvt“t˜ltctī t˜ctÛttj Sct˙ mt˙mittS˙ Mt˙ctījtÛttÙt‘ ctīt ct`otvlt jtcttvt¸pt Ytt˜òtī ctW ct˛t˜æ ,
: (⭲t) mit} Ùt¸æctīct‘ ct`ī t˜mtætvlt--t˜ǐtt˜[š ntš‘ ltitt pt`0SFtī0mtt`0 Ft¸īǐtj Étjt utt˜ltFttt˜olt itlÙttlctctī utt˜ltj#tt, šQctītW ct`ī utÙtt`it ltitt Ùtt˙t˜$tctī Ùt¸æctīct‘ ct`ī Fmǐttct ltitt Yttjlt ctW Fmtctīt sttitctvt mttFtīt` FtjcFtjt, Yttjltt`Ùt t˜ctzttvt, stǐtyt`vvtt` Sct˙ Gmtct`ī Étjt Yttjltt`Ùt t˜ctzttvt ltitt mtYÙtltt ctīt stOÙtÙtvtı 15. lt`jncttR mt˙oYt‘ mtt˜nltı (yt) mttct¸t˜õctī Mtt˜òtī ct`ī ltlct ltitt vtt“mt“t˜vtctī vtt`ltptt` ct`ī yttj` ctW S0 št`0 cttnvt ct`ī t˜ctÛttjı (mt) mttct¸t˜õctī Mtt˜òtī ctīt ctntÉt`Ftt`Ùt t˜mtætvltı Mtlttyot`, itt`jt` t˜ctptÙt--itt`jt` t˜ctptÙt ct`ī ctītjCt, sttt˜it‘ctī mttcttt˜ptctī Sct˙ mtt˙mct˛īt˜ltctī Ftt˜jCttct, t˜oǐǐtt` mtǐltvtlt ctīt` mittFtvtt, it¸ǐttct jtptct˙Mt, Fǐlt¸ltt˜ctMt
(o) n`ǐtFtīt`[‘ ct`t˜ctīC[j ctīt ùoÙt -- mitǐt t˜mtætvltı ([) jt°^t`Ùt Mtt˜òtī Ftj sttOttt˜jlt ùoÙt mitǐt t˜mtætvltı (Ût) ptt` [tn`š, t˜ctÛt`ǐt ltitt Sǐt`ct:ptW[j o ytǐtytvt, t˜Ktǐtptt` ›tītt˜vlt, mtǐltvtlt ct`ī sttj˙t˜Ytctī ctītǐt ctīt mittFtlÙtı 16. Ûtt“oncttR Mtlttyot`, stǐttGöt`vt t˜Ktǐtptt` ctīt t˜ctptÙt stt˜YtÙttvt, ct˛īt˜utctī Sct˙ sttt˜it‘ctī
mt`ct`jmctīt` Étjt utt˜ltFttt˜olt t˜ctīÙt` itÙt` cttÙt¸ Mtt˜òtī ct`ī t˜mtætvltı
KtC[ --yt
GFttÙt, ct¸nccto lt¸itǐtctī ctīt` utct¸Kt Ftt˜jÙtt`ptvttS˙, t˜Ftījt`pt lt¸itǐtctī Étjt ot` itÙtt` tj˜ ÙttÙtltW Sct˙ Gmtct`ī ǐtt`ctī ctītÙt‘, mtǐltvtlt ctīt ntmt, t˜cto`Mtt` mt˙Ftct‘ī Fyvtytlttlttı
17. lt`jncttR ltitt Ûtt“oncttR Mtlttyot` ctW stit‘cÙtctmitt, mtcttpt ltitt mt˙mct˛īt˜lt, mtǐltvtlt ct`ī stvltit‘lt pttt˜lt ltitt otmt utitt, utt“ett`t˜itctīt` ctW Ftt˜jctlt‘vt, mtǐltvtlt,
7. ǐÙtt[`vt[tFt‘ī ct`ī t˜ctÛttjtW ct`ī mt˙oYt‘mtt˜nlt mtcÙtctī Ùt¸æ ctīt` ptct‘vt mt˙ctīǐFtvtt, Ùtt˙t˜$tctī Ùt¸it ctW ptct‘vtt` ctīt` vttltptt`ı 8. t˜Éltt`Ùt t˜ctÕt Ùt¸æ ct`ī ot“jtvt t˜ct$t- stvltit‘lt mittFtlÙt, Ftītjmtt` mttt˜nlÙt, stctt`j Kt¸mtjtW, Ft˜ltntmt ǐt`Ktvt, t˜ptÙttytjvtt`, mttcttt˜ptctī mt˙mct˛īt˜lt ctīt t˜ctctītmt, Gòtj Yttjlt ctW mttFtīt` FtjcFtjt, t˜ǐt˙ittÙtlt
-jt°^tW ctīt` mt“vÙt vttltptt`ı 9. mtt`t˜ctÙtlt mt“vÙt vttltptt`--ǐt`t˜vtvt š^tšmctīt`, mštt˜ǐtvt ltitt ctt`0 [t`0 mtt`ctīt`ǐtt`ctmctīt` ct`ī t˜ctÛttjtW ct`ī mt˙oYt‘ mtt˜nltı 10. mtcttpt, ot˜#tCt ctW Ytt˜òtī MttKttS˙ı 18. Ft˙õncttR ltitt sttj˙t˜Ytctī mtt`ǐtncttR Mtlttyot` (jtptvt“t˜ltctī Ft˜ltntmt) utto`t˜Mtctī jtptct˙MttW ctīt GoÙt: yt˙ittǐt, ctīMctt`j,( pt“vt¸ǐt YtÙttot`nvt, YtÙttot`nvt ctīt` mt˙ctīǐFtvtt ltitt t˜mtætvltı (⭲t) >ttt˜Ytctīt`Ùt YtÙttot``nvt ctīt` mt˙ctīǐFtvtt ltitt t˜mtætvlt--t˜ǐtt˜[ǐt nt[‘, sttvõ` cÙttFt`ī, cttF‘0 ntct‘īytt` sttyot`vt) it¸ptjtlt cttǐtctt, ytnctvtt` jtpÙt t˜ctptÙt vtitj mttct,tpÙt, ǐtt`ot` jtpÙt, ct¸itǐt mttct,tpÙt, utitct ÛtjCt: yttytj n¸cttÙt¸˙ mttj, mttct,tpÙt Mt`jMttn ctīt ltitt n`vtjt` t˜ctīt˜mt˙ptj ct`ī t˜ctÛttjtW ct`ī mt˙oYt‘ mtt˜nltı 11. t˜vtjmltt`ctījCt ct t˜ctctītmt ytvttct utt˜ltj#tt ct t˜ctctītmt ctīt` mt˙ctīǐFtvttS˙ı 1n. sttÙt¸Ot t˜vtÙt˙$tCt ltitt utMttmtvt Ft¸lt‘ittt˜ǐtÙttW ctīt stt“Ftt˜vtct`t˜Mtctī utt˜lt‰tvtı 19. Ft˙õncttR ltitt sttj˙t˜Ytctī mtt`ǐtncttR Mtlttyot` (mtcttpt, stit‘cÙtctmitt, mt˙mct˛īt˜lt) #t`$tt`Ùt mt˙mct˛īt˜lt Sct˙ t˜vtjvtt`ctījCt ctīt` mt˙ctīǐFtvtt ltitt t˜mtætvltı 13. Mtt˙t˜lt -- ytntǐtt` ltitt Mtt˙t˜lt--mt˛ptvt ctīt` mt˙ctīǐFtvtt ctīt t˜mtætvltı 14. mt˙Itut‘ GFtMtctvt ct`ī t˜mtætvlt, mt˙Itut‘ mttt˜nlÙt, uttvltt`Ùt mittFtlÙt Mt“t˜ǐtÙtt˙, t˜ctptÙtvtitj mttct,tpÙt ctW mtcttpt, mt˙mct˛īt˜lt mttt˜nlÙt ltitt ctīǐtt, Sct`īÕtjcttot` sttvot`ǐtvt: ctīytt`j ltitt it¸vvttvtctī, Ytt˜òtī
GFtMtctvt ctīt` t˜ctt˜OtÙttB, mt˙Itut‘ GFtMtctvt ctīt` itt˙Xxx`cttot` Mt“ǐtt`ı
j#tt ⭲tO*t*tvt : t˜Éltt`*t ØtMvt-- Ftīt jt°^t`*t mt¸j#tt KtC[--⭲t
sttvot`ǐtvt Ût“ltvÙt mttFtīt` FtjcFtjt ctīt mtctˇÕtjcttot` ÛtjCtın0. ⭲tctâytj : Gmtctīt t˜ctptÙt stt˜YtÙttvt Sct˙ mttct,tpÙt ctīt mt¸Â.{t`ctījCt pttitt`j ltitt ctvtmtyt cÙtctmitt
ctīt` mittFtvtt, Gmtctīt` jtptFttlt vtt`t˜lt, Ottt˜ct‘ctī ltitt mttcttt˜ptctī Ât˜°ctīt`Ct ctīt t˜ctctītmt, mt¸ǐtn-S-ct¸īǐt ctīt t˜mtætvlt Sct˙ Ottt˜ct‘ctī vtt`t˜lt, styt¸ǐt Ftīptǐt, t˜ctÛttjctī
1. mtctctītǐtt`vt vttltt˜ptctī t˜Ûtvltvt ct`ī stvòtit‘lt jt°^t`Ùt mt¸j#tt ctīt mt˙ctīǐFtvttlctctī {t˙Ûttı n. jt°^t`Ùt mt¸j#tt t˜ctutÙtctī t˜Ûtvltvt Sct˙ mtctmÙttsttW ctīt t˜ctctītmt 3. Sct˙ Ft˜ltntmtctītj, ctīǐtt ltitt utt“ett`t˜itctīt` ctīt` jtpt mt˙j#tCtı n1. mtītnāttR Mtlttyot` ctW ct¸itīt mttct,tū*t : ptnt˙itt`j, Mttnptnt˙ Sct˙ stt“jit˙pt`yt ctīt` utct¸Kt vtt`t˜ltÙtt˙ jt°^t`*t Mtt˜òtâ ct`â t˜mtætvlt : (⭲t) jt°^t`Ùt Mtt˜òtī ctīt Ftt˜jYttuttlctctī {t˙Ûttı (yt) mt˙ctīǐFtvtt ct`ī vFt ctW Mtt˜òtī ctīt` stFtt˜jMt¸æltt (mt) jt°^ -- jtpÙttW ctīt` Mtt˜òtī (utMttmtt˜vtctī Sct˙ Ottt˜ct‘ctī) mttct,tpÙt ltitt ptctt`otj, ct¸itǐt jtpÙt ctīt` utct˛īt˜lt, mt$tncttR Mtlttyot` ct`ī Glltjtæ‘ ctīt mt˙ctīš: t˜ctõt`n stnt`ct jtpÙt, t˜Mtcttptt` ltitt ctīt` vFtj`Kttı (o) Mtt˜òtīt˜ctnt`vt utYttct (*t) jt°^t`Ùt Mtt˜òtī ct`ī ltlct (1) ct˛lt‘ ltlāt : Yttitt`ǐt, ptvtmt˙KÙtt, #t`$t t˜ctmlttj, uttctīt˜ltctī mt˙mttOtvt, stt“ett`t˜itctī #tctltt, sttj˙t˜Ytctī ctjt9t jtpÙtı nn. stit‘cÙtctmitt Sct˙ mtcttpt, mtt`ǐtncttR ltitt mt$tncttR Mtlttyot`, ptvtmt˙KÙtt, ct˛īt˜ut Sct˙ t˜MtǐFt GlFttovt, vtitj [Ût, st˙«t`ptt` ltitt t˜ctòtt`Ùt #tctltt, ct“zttt˜vtctī Sct˙ uttt˜ctt˜Otctī #tctltt, mt“vÙt #tctlttı (n) ⭲tct˛lt‘ ltlāt --- vt`lt˛lct vtt“ctījMttnt` Sct˙ mt˙it9vttlctctī o#tltt, mtjctītj ctīt utctītj, mttcttt˜ptctī utīt˙mtt`mtt` ct˙īFtt˜vtÙttW ct`ī cttOÙtct mt` Ùttjt`Ft mt` cttt˜CtpÙt Sct˙ cÙttFttj ›tītt˜vlt Yttjltt`Ùt cttt˜Ctt˜pÙtctī ctit‘ ytQctī, ytt`ctt Sct˙ $tīCt utCttǐtt` ct˛īutctītW ctīt` t˜mitt˜lt, stctītǐt, Sct˙ vt˛pttltt`Ùt mtctt˙itltt, jt°^t`Ùt, Ûtt˜j$t Sct˙ utt˜lt‰t, jt°^t`Ùt ctvtt`ytǐt, ptvt--mtctit‘vtı 4. ⭲tvltjt‘°^t`*t mt¸j#tt ctât` mt˙ctâīFtvtt ltstt vtct˛vt` (ctt˘[īt) : (1) t˜vtÙttW ctīt` t˜mitt˜ltı n3. ct¸itǐt mttct,tpÙt ct`ī st˙ltit‘lt mt˙mct˛īt˜lt, Ftītjmtt` mttt˜nlÙt (Ft˜ltntmt «t˙ittW mtt˜nlt), tn˜ vot` Sct˙ Ottt˜ct‘ctī mttt˜nlÙt, ct¸itǐt mittFtlÙt, ct¸itǐt Mtt`ltÙt¸æ Sct˙ Mtt`lt Ùt¸æt`òtj ctītǐt ctW st˙ltjt‘°^t`Ùt mt¸j#tt ct`ī mt˙ctīǐFtvttlctctī {tBÛt`ı (2) Mtt˜òtī mt˙lt¸ǐtvtı (3) mttcttt˜nctī mt¸j#ttı (4) mttcttt˜nctī utt˜ltj#ttı (5) t˜Ût$tctīǐtt, mittFtlÙt stt“x x˜Ût$tctīǐtt ctīt` utto`t˜Mtctī MttKttS˙ Mttvtt`Ùt mt˙itt`lt t˜ctzttvt, utt“ett`t˜itctīt`, mtcttF‘ ptÙt t˜mt˙n Ktitt`ǐtt˜cto jnmÙtcttot` mt˙ctīǐtvtctto: otjt t˜vtit‘¸šlttı 5. FttjcFtt˜jctī stt“j vttt˜Ytctīt`Ùt YtÙttot`nvt ctīt` mt˙ctīǐFtvttS˙ Sct˙ t˜mtætvltı 6. (1) MtŒttŒttW ctât Øtmttj-- jt°^t`Ùt #t`$tt`Ùt Sct˙ stvltjt‘°^t`Ùt mt¸j#tt ct`ī t˜Mtctīt`n, ct“uCtct Ytt˜òtī/ctntjt°^ Otct‘ t˜mtKt mtct¸otÙt ctīt t˜ctctītmt (Kttǐtmtt) n4. ⭲t9tjātntR Mtlttyot` ctât Ft˛ātt‘æ‘ : ct¸itǐt mttct,tpÙt ct`ī ntmt ct`ī ctītjctī, #t`$tt`Ùt t˜ǐtS yttOtt ct`ī vFt ctWı (n) sttÙt¸Ot t˜vtÙt˙$tCt ctīt` mtcYttctvttS˙ı 7. ⭲t˙ltjt‘°^^t`*t ⭲ttlt˙ctâātto : mt˙ctīǐFtvtt Sct˙ sttÙttctı 8. t˜ātFītāt uāt˙ Xxx˜lt--t˜ātFītāt : mt˙ctīǐFtvttS˙ mttct˙ltt` jtpÙt t˜vtpttct ctīt oct:ctīvt, yt˙ittǐt, stctOt, Ft`MtcttsttW ct`ī st˙ltit‘lt ctjt9t, utYt¸ltt ctīt GoÙt, ctjt9t jtptctīt`utt`Ùt ltitt t˜ctòtt`Ùt utCttǐtt`, stFtīittvt Mtt˜òtī
Continued....
ctīt stYÙt¸oÙt, Fttvtt`Ftlt, 1761F‘0 st˙«t`pttW ctīt` t˜ctptÙt ct`ī mtctÙt stt˙ltt˜jctī ctīctptt`jt` jtptvt“t˜ltctī, mtt˙mct˛īt˜ltctī Sct˙ sttt˜it‘ctīı
Ft˜ltntmt: ØtMvt Ftīt--n (KtC[ ctâ)
it¸Ctmtt$t stt“j it¸Ctmtt$tt`Ùt t˜ctFtltitctvt Ftæt˜lt (ctâ) mt˙KÙttlctctī ltitt mt˙jÛtvttlctctī t˜ctFtltitctvt (stcÙtctt˜mitlt) (Kt) mt`ct:mt ittCtmtt$tt`Ùt t˜ctFtltitctvt (ctīǐt`vt t˜Ftīǐšj) (XXY) švt‘j (XO) GÛÛt cttot (XXX) stvlt: mt`ct:mt ltitt stvÙt t˜mtv[^tWct stcÙtctmittı (it) sttšt`mtt`ctǐt t˜mtFtititctvt-[tGvt t˜mtv[^t`ct, Ftštv,
1] Yttjlt ctW st˙«t`ptt` Mttmtvt ctīt` mittFtvtt Yttjltt`Ùt Mtt˜òtīÙttW ct`ī t˜ctvæ st˙«t`ptt` mtFtīǐtltt ct`ī ctītjCt, ct“mttj, ctjt9t jtptmt˙It ltitt Ft˙pttyt pt“mtt` utct¸Kt Mtt˜òtīÙtt˙ S[ct[‘ ltitt ›tīt`[tÛt`š t˜mtv[^t`ctı (‹t) cttvtct cÙttt˜OtÙttW ctW stvt¸ctt˙t˜Mtctīltt ct`ī ǐt#tCt, stvt¸ctt˙t˜Mtctī Ftjt`#tCt, sttvt¸ct˙t˜Mtctīt` mtcytvOtt` FtjtctMt‘, cttvtct [t`.SvtS. ctīt`
t˜ctjt`Ot ctW mtntÙtctī mt˙t˜Ot ctīt` vtt`t˜lt ltitt ptyltt` ctīt t˜mtætvltı n. ⭲ttˆFtt˜vtāt`t˜Mtctâ ⭲tst‘ā*tātmstt : ctīj utCttǐtt` mt˙Ftt˜òt ctīt stFtcttn ([`^vt sttFtī ct`ǐit) ltitt Gett`ittW uttF` tītFǐt ltÙttj“ ctījvtt, stvtctttM˜˙¸ tctīt` cttvttÛt$˜ t ltÙttj“ ctījvtt ltitt ctM˙ t mt$t t (pttvttc`` t) stOÙtÙtvtı 8.7 S`tltn˜ ttm˜ tctī ltitt pttct` tctz˜ ttvtt` Fttj˜ ut#Ùt` ctW utptttlt˜ ctīt`
ctīt t˜ctvttMt, t˜ctòtt`Ùt oyttct stt“j jtptmct cÙtctmitt (ptcttRotjt`, j“Ùtltcttjt` ct ctnǐtcttjt` cÙtctmittS˙) 1857 ltctī ctīt` st˙«t`ptt` jtpt ctīt` mt˙jÛtvtt (1773 ltitt 1784 stctOttjCtt, utpttt˜lt stt“j utpttt˜ltctto ct˙Mttvt¸itlt stt“j it“j ct˙Mttvt¸itlt vFttlctctī t˜Yt÷tltt ctīt ptt`ct t˜ctzttvtt` sttOttj utpttltt`Ùt cttvtoC[, ct˙Mttvt¸itlt stt“j it“j
ct`ī stt˜Xxx˜vtÙtct, utMttmtt˜vtctī mt˙it9vt mtt˜nlt) 3. GFtt˜vtāt`Mtt`*t Mttmtvt ctât t˜ātjt`Ot : sttj˙t˜Ytctī t˜ctõt`n: 1857 ct`ī t˜ctõt`n ct`ī ctītjCt, Gmtctīt mctvFt ltitt utYttct, ctM˙ ttvti¸ tlt ctīt cttlttctjCt ctī` mt˙oYt‘ ctW utpttlttÙ` t mtcytvOttÙ` t tctM˜ tu` tlttÙt,W utpttltt`Ùt ctittctī´ jCt ctīt pttc` t tctz˜ ttvtt` sttOttj, utpttlttÙt` tY˜ t÷tlttÙtW sttj“ cttvtct ctW
1858 ltitt ytto ct`ī ctītǐt ctW jtpt ctīt Ft¸vt‘it9vt 4. ⭲ttˆFtt˜vtāt`t˜Mtctâ Mttmtvt ct`â mttcttt˜ūtctâ-- mtt˙mct˛īt˜ltctī utYttct ‘mttcttt˜ptctī mt¸Ottj ct`ī Mttmtctīt`Ùt GFttÙt (1828- mt˙ctījCtı 8.8 cttvtctltt ct`ī vt˛pttltt`Ùt mtcttn - t˜ctMt`utlttÙtW stt“j mt˙mttj ctW Fmtctīt t˜ctltjCt, cttvtct mtcttntW ctīt utpttltt`Ùt ctitt´ctījCt o¸t˜vtÙtt ctīt` utct¸Kt ptt`t˜ctlt
-57) uttÛÙt sttt˜iǐtctī t˜ctctto st˙«t`ptt` t˜Mt#tt ltitt ct¸õCt utCttǐtt` ctīt sttitctvt, F‘mttF‘ t˜ctMtvtjt` itt˜ltt˜ctt˜OtÙtt˙, yt˙ittǐt ctW Ft¸vt‘pttitjCt, yt˙ittǐt ct stvÙt #t`$ttW ctW mttcttt˜ptctī ltitt Ottt˜ct‘ctī mt¸Ottj sttvot`ǐtvt, mtcttpt mt¸Ottj ct`ī ct`īvõ t˜ytvo¸ ct`ī vFt ctW ctt˜nǐttS˙ı 5. ⭲tst‘ā*tātmstt 1858-1914 : j`ǐtct` Yttjltt`Ùt ct˛īt˜ut ctīt cÙttFttjt`ctījCt,Yttt˜ctnt`vt ßtt˜ctctītW ctīt` mt˙KÙtt ctW ltitt «ttctt`Ct $tīCt «tmltltt ctW yt.{t`òtjt` stctītǐt, st˙«t`ptt` Gett`ittW ct`ī t˜ǐtS Yttjlt Sctī yttpttj, mtt`cttMt¸ǐctī nštvtt, t˜ctt˜vtÙtct, ltitt utt˜ltctītjt`, GlFtto Mt¸ǐctī, sttOt¸t˜vtctī Gett`ittW ctīt mtt`t˜ctlt t˜ctctītmtı 6. Yttjltt`*t jt°^ātto ctât ⭲ttj˙t˜Ytctâ ÛtjCt : mttcttt˜ptctī Ft˛‰Yttt˜ct jt°^t`Ùt mt˙IttW ctīt it9vt, uttj˙t˜Ytctī jt°^cttot` Ùt¸it ct`ī ot“jtvt ct˛īutctī ltitt ptvtpttltt`Ùt t˜ctõt`n, Yttjltt`Ùt jt°^t`Ùt ctīt˙«t`mt ctīt` mittFtvtt, ctīt˙«t`mt ctīt vtjct˙Ft˙˙itt` ÛtjCt, stt˜ltctto ctīt t˜ctctītmt, 1909 ctīt Yttjltt`Ùt Ftt˜juto stt˜Xxx˜vtÙtct, Itj`ǐtt Mttmtvt sttvot`ǐtvt, Yttjlt mtjctītj ctīt 1919 ctīt stt˜Xxx˜vtÙtctı 7. ot` ctntÙt¸ætW ct`ī ytt`Ût Yttjlt ctīt` stit‘cÙtctmitt Gett`it ltitt mt˙j#tCt ctīt` mtctmÙtt ct˛īt˜ut mt˙yt˙Xxx` mt˙ctīš stlÙtt˜Otctī cttǐÙtntmt («t`š t˜[ut`Mtvt) stt`štctt ctījtj ltitt Ft#tFttltFttCt‘ mt˙j#tCt, ßtct mt˙it9vttW ctīt t˜ctctītmt, t˜ctīmttvt sttvot`ǐtvt, ctīt˙«t`mt ct`ī sttt˜it‘ctī ctītÙt‘›tīct ctījt˙Ûtt` utmlttct 1931ı 8. itt˙Xxx` ptt` ct`ī vt`lt˛lct ctW jt°^ctto itt˙Xxx` ptt` ctīt` ptt`ctvtct˛t˜òt, t˜ctÛttj ltitt ptvt mtnÙtt`it ctīt` Ftæt˜ltÙtt˙, jt`ǐt`ct:š mtlÙtt«tn, t˜KtǐttFtīlt, stmtnÙtt`it sttvot`ǐtvt , mtt˜ctvtÙt stctztt sttvot`ǐtvt, 1940 ctīt mtlÙtt«tn ltitt Yttjlt Út`.[tW sttvot`ǐtvt, uttvltt`Ùt mltj Ftj ptvt sttvot`ǐtvtı (9) jt°^cttot` sttvot`ǐtvt ct`ī stvÙt ltlct (ctâ) 1905 mt` ›tīt˙t˜ltctītjt` sttvot`ǐtvt (Kt) mt˙ct“Ottt˜vtctī jtptvtt`t˜lt: mcttjtptcttot`, Gotjcttot` utt˜ltmt˙ct`ot` mtnÙtt`itı(it) ptcttnj ǐttǐt vt`nv ct`ī t˜ctÛttj (‹t) cttctFt˙itt` mtcttptcttot` ltitt mttcÙtcttot` (.[) mt¸Yttut Ûtvõ ytt`mt ltitt Yttjltt`Ùt jt°^t`Ùt mt`vtt (Ût) mttcutott˜Ùtctī ltlct: ct¸t˜mǐtct ǐtt`it ltitt t˜nvot ctntmtYtt (Ú) jt°^t`Ùt sttvot`ǐtvt ctW ctt˜nǐttS˙ı10. mttt˜nt˜lÙtctī
utpttt˜ltÙtt˙, Gvtctīt ctitt´ctījCt stt“x x˜ctMt`utlttÙtWı 8.9 sttvt¸ct˙t˜Mtctīt` t˜Ûtvnt˙ctī S.ytt`.stt`. ctW sttÙt¸t˜ǐt˙it ltitt ptvtmt˙KÙtt t˜Yt÷tlttÙtW, sttjSÛt. jòtī mtcttn,
SÛt.Sǐt.X.XXx.Ftt`. š^tvmtt˜Ftījt`vt, ptt`.Sct., jòtī ct`ī SvpttFct, Mttjt`t˜jctī t˜ctMt`utlttÙtW nt`cttiǐtt`t˜ytvt SÛt.ytt`., Mttjt`t˜jctī ctmtt, vtt.[t`itt˜lt, Õtmtvt utt˜›tīÙtt ltitt t˜ctt˜Yt÷t mtt˙mct˛īt˜ltctī mttcttt˜ptctī sttt˜it‘ctī mtcttntW ctW mt˙ct`ot` stctytt`Otvt, Ottct,Fttvt, cttÙt¸ utotutCt, ctetFttvt, vtMtt`ǐt` FtotittX ltitt cÙtctmttÙt mtcytvOtt` KtltjtW ctīt mcttmiÙt Ftj Ft.[vt` cttǐtt utYttctı
9.1 Fttt˜jt˜mitt˜ltctīt`Ùt vt˛t˜ctzttvt ctīt` mt˙ctīǐFtvtt stt“x x˜ctt˜OtÙtt˙, stvt¸cttīǐtvt, mttcttt˜ptctī stt“j mtt˙mct˛īt˜ltctī, t˜vtÙtltcttot` t˜mtætvlt, Sctī mtctt`#tt, mt˙mttOtvt pt“t˜ctctī, it“j pt“t˜ctctī stt“j OttjCtt`Ùt t˜ctctītmt pt“t˜ctctī stvt¸cttīǐtvt-ptǐtcttÙt¸ mtcytvOtt`, FtÙtt‘ctjCtt`Ùt, Ftt`utctī stt“j sttvt¸ctt˙t˜Mtctīı
10.1 mtctctītǐtt`vt mtcttpt ctīt` mtctPtvt` ctW uttmt˙t˜itctīltt, «ttctt`Ct, ptvtpttltt`Ùt, Mtnjt` stt“j stvltjt°^t`Ùt mltjtW Ftj vt˛ptt˜ltÙtltt ctīt` itt˜ltctīt`, vt˛pttt˜ltÙtltt É˙o stt“j jtptvtt`t˜ltctī t˜ctctītmt vt˛pttt˜ltÙt mtt`cttsttW ctīt` mt˙ctīǐFtvtt, vt˛pttt˜ltÙtltt ltitt jt°^ jtptctīt`Ùt mt˙ctīǐFtvttı
11.1 cttvtct ct˛t˜æ stt“x x˜ctctītmt ctīt` stctOttjCtt-ct˛t˜æ ct`ī ÛtjCt, utmtct Fttct‘, utmtct t˜MtMt¸, ytÛtFtvt, t˜ctīMtt`jtctmitt, utt“.{ltt, ptjlctı ct˛t˜æ ltitt t˜ctctītmt ctīt` utYttt˜ctlt ctījvt` cttǐt` ctītjctī-ptvtt˜vtctī FtÙtt‘ctjCt mtcytvOtt` pt“ct jtmttÙtt˜vtctī, Ftt`utCt mtcytvOtt` mtt˙mct˛īt˜ltctī ltitt mttcttt˜ptctī sttt˜it‘ctīı cÙtt`ct˛t˜æ stt“j ptjlct t˜mtætvlt stt“j ut`#tCt pt“t˜ctctī ctīǐttvt¸›tīt˜ctctī ot`Itt‘Ùt¸ cttvtct Mtjt`j ltitt ctītt˜Ùtctī utct˛t˜òt, cttvtct ct˛t˜æ stOÙtÙtvt n`lt¸ utCttǐtt` t˜ctzttvtı
1n.1 utptvtvt pt“t˜ctctīt`, ptvtmt˙KÙttt˜Ùtctīt` stt“j ptvtmt˙KÙtt stOÙtÙtvt, Ft¸vuttW stt“x x˜vtÙttW ctīt` ptvtvt Mtjt`j utt˜›tīÙtt, cttvtct utptvtvt ct`ī pt“t˜ctctī Ft#t, jptt`oMt‘vt,
ltitt mtt˙mct˛īt˜ltctī sttvot``ǐtvt, š“itt`j ut`ctÛt˙o, mt¸yt,ctCtÙtct Yttjltt`, Fctīyttǐt-ct`īctǐt GotnjCt ct`ī ltt“j Ftjctīǐtt ctW vtF‘ utct˛t˜òtÙtt˙, t˜Ftīǐct Gett`it ǐt`KtctītW ct`ī mt˙it9vt jptt`t˜vtct˛t˜òt ltitt stvÙt ptt`ctvt-ItšvttsttW ctīt` (utptvtvt mtcytvOtt`) uttmt˙t˜itctīltt ct`ī ptvtvt #tctltt ct`ī utt˜ltvFt stt“x x˜ctYt`oı 1n.n ptvtmt˙KÙttt˜Ùtctīt` t˜mtætvlt pt“t˜ctctī,
ltitt j˙itct˙Ûtt`Ùt mt˙mittS˙ı 11. mcttOtt`vtltt ctīt` stt`j 1935 ctīt stt˜Xxx˜vtÙtct, ctīt˙«t`mt ct`ī ct˙t˜$tctC[ǐt 1937-39 Fttt˜ctīmlttvt sttvot`ǐtvt 1945 ct`ī ytto ctīt` ǐtnj (sttj sttF‘ Svt t˜ctõt`n lt`ǐtittvtt t˜ctõt`n sttt˜o) mt˙ct“Ottt˜vtctī cttltt‘S˙ ltitt mtòtt nmlttvltjCt 15 stitmlt 1947ı 1n. mcttOtt`vtltt ctīt utitct ÛtjCt (1947-64) t˜ctYttptvt ct`ī Ftt˜jCttct, mttcutott˜Ùtctī t˜n˙mtt, itt˙Xxx` ptt` ctīt` nlÙtt, sttt˜it‘ctī stcÙtctmitt, jtpÙttW ctīt Sctīt`ctījCt, ǐtt`ctīltt˙t˜$tctī mt˙t˜ctOttvt 1950 ct˛īt˜ut mt¸Ottj, stt“ett`t˜itctī ctīǐÙttCtctītjt` jtpÙt ctīt t˜vtctt‘Ct, Ùtt`ptvtt, ltitt stt“ett`t˜itctīt`ctījCt, it¸š t˜vtjFt`#tltt ctīt` t˜cto`Mt vtt`t˜lt, Ft.[t`mtt` o`Mtt` ct`ī mttit mt˙yt˙Otı
KtC[ Kt
13. Øtytt`Otvt ctât ⭲ttOt¸t˜vtctâ t˜ātÛttj : 1. Ft¸vtptt‘itjCt Ft˛‰Yttt˜ct ct`ī vFt ctW n. utytt`Otvt ct`ī ct¸KÙt t˜ctÛttj, cttlt,vmttW 3. Ùttjt`Ft mt` yttnj utytt`Otvt ctīt utmttj 4.
mtcttptcttot` t˜ctÛttjtW ctīt GoÙt (cttct:mt‘ ltctī) 14. ⭲ttOt¸t˜vtctâ jtūtvtt`t˜lt ct`â Goitct : 1. Ùttjt`Ftt`Ùt jtpÙt utCttǐtt` n. stct`t˜jctīt` ›tīt˙t˜lt ltitt mt˙t˜ctOttvt 3. utīt˙mtt`mtt`
›tītt˜vlt ltitt Ftt˜jCttct, 1789-1815 4. t˜yt,t˜šMt ǐtt`ctīltt˙t˜$tctī jtptvtt`t˜lt, 1815-1850 mt˙mtot`Ùt mt¸Ottjctī, ct¸òtī cÙttFttj, Ûttt˜š‘mš 15. ⭲ttˆÅtt`t˜itctât`ctâjCt : 1.
st˙«t`ptt` stt“ett`t˜itctī ›tīt˙t˜lt ct`ī ctītjCt ltitt mtcttpt Ftj Gmtctīt utYttct n.stvÙt o`MttW ctW stt“ett`t˜itctījt`ctījCt mt˙Ùt¸òtī jtpÙt stct`t˜jctīt, ptct‘vtt`, vmt, pttFttvt, 3. mtcttptcttot` stt“ett`itt`ctījCt vmt ltitt Ûtt`vt ctW, 16. jt° jtū*t ØtCttītt` : 1. 19 cttR Mtlttyot` ctW jt°^ctto ctīt Glittvt n. jt°^ctto ptct‘vtt` ct Fšǐtt` ctW jt° t˜vtctt‘Ct 3. jt°^t`ÙtlttsttW ct`ī sttt˜ct‘Yttct mt` mtct,tpÙttW ctīt t˜ctItšvtı 17. mttct,tū*tātto ltstt GFtt˜vtāt`Mtātto : 1. stt“Ftt˜vtct`t˜Mtctī utCttǐtt` (vtF‘ o¸t˜vtÙtt ctīt Mtt`utCt, stšǐttt˜všctī Fttj otmt cÙttFttj, St˜MtÙttF‘ t˜ctptÙttW mt` ctīj) n. mttct,tū*t ct`â Øtctâtj : cÙtctmitt ltitt stcÙtctmitt : ǐt“t˜švt stct`t˜jctīt, ot˜#tCt stt˜utīctīt, F˙[t`vt`t˜MtÙtt, sttmš`^t˜ǐtÙtt 3. mttct,tū*tātto ltstt ct¸òtâ ā*ttFttj : vtct mttct,tpÙtcttoı 18. ›tâtt˜vlt ltstt Xxx˜lt ›tâtt˜vlt : 1. 19cttR Mtlttyot` ctW Ùttjt`Ftt`Ùt ›tīt˙t˜ltÙtt˙
n. 1917--1921 ctīt` vmtt` ›tīt˙t˜lt 3. 7tīt˙mtt`cttot` utt˜lt--›tīt˙t˜lt, Fšǐtt` ltitt ptct‘vtt` 4. 1949 ctīt` Ûtt`vtt` ›tītt˜vltı 19. t˜ātMāt*t¸æ : 1. mtctt‘t˜itctī Ùt¸æ ct`ī ltt“j Ftj utitct ct t˜Éltt`Ùt t˜ctMctÙt¸æ : mttcttt˜ptctī lttlFtÙt‘ n. Øtstct t˜ātMāt*t¸æ : ctītjCt ltitt Ftt˜jCttct 3. t˜Éltt`*t t˜ātÕt*t¸æ : jtptvt“t˜ltctī Ftt˜jCttct, n0. Mtt`lt*t¸æ
: 1. ot` it¸štW ctīt stt˜ct‘Yttct 2. Ftt˜MÛtctt` Ùttjt`Ft ctīt Sctīt`ctījCt ltitt stct`t˜jctīt` jCtvtt`t˜lt, mttcÙtcttot` Fttctt´ Ùttjt`Ft 3. lt˛ltt`Ùt t˜ctÕt ltitt it¸š t˜vtjFt`#tltt ctīt stt˜ct‘Yttct
4. mt˙Ùt¸xxx xx°^ ltitt t˜ctcttotW ctīt mtcttOttvtı n1. ⭲ttˆFtt˜vtāt`t˜Mtctâ Gotjt`ctâjCt : 1. ǐt“t˜švt stct`t˜jctīt ytt`t˜ǐtytj, n. stjyt uto`Mt t˜ctßt, 3. stutīt`ctīt j˙it Yt`o vtt`t˜lt mt` ǐtt`ctī lt˙$t ctīt` stt`j 4. ot˜#tCt Fttct‘ St˜MtÙtt t˜ctÙtltvttctı nn. GFtt˜vtāt`Mtātto ctât ⭲t˙lt ltstt ⭲tt˜ātctâtmtt`ctâjCt :1.GFtt˜vtāt`Mtātto ctât ⭲t˙lt : stt“Ftt˜vtct`t˜Mtctī mt«ttpÙttW ctīt #tjCt--t˜yt,t˜šMt utWīÛt, [Ût n. t˜ctctītmt ct`ī stctjt`Ot ctītjctī ǐt“t˜švt stct`t˜jctīt, stutīt`ctītı n3. *t˛jt`Ft ctât uctât`ctâjCt : 1. Ùt¸æt`òtj mt˙mittSB vttštW ltitt Ùttjt`Ftt`Ùt mtct¸otÙt n. Ùttjt`Ftt`Ùt mtct¸otÙt / Ùttjt`Ftt`Ùt mt˙It ctīt mtctvctÙtvt ltitt t˜ctmlttj n4. mtt`t˜āt*tlt t˜āt‹tšvt ltstt uctâOt¸,ātt`*t t˜ātÕt 1. mtt`t˜ctÙtlt mttcÙtctto ltitt mtt`t˜ctÙtlt mt˙It ct`ī t˜ctItšvt ct`ī ctītjctī 1985--1991 n. Fttctt´ Ùttjt`Ft ctW jtptvt“t˜ltctī Ftt˜jctlt‘vt 1989--1992 3. t˜ctÕt ctW Mtt`ltÙt¸æ ctīt` mtcttt˜Flt ltitt stct`t˜jctīt` utYt¸lct 4. t˜ctÕtcÙttFtt`ctījCtı
n0. mtcttūt ctât*t‘ : Øtstct ØtMvt -- Ftīt mtcttūtctât*t‘ : oMt‘vt uāt˙ ØtCttt˜īt*tt˙
mtcttūtctât*t‘ : stit‘ Gö`MÙt, t˜ctutÙt #t`$t, cttvÙtlttS˙ Sct˙ cttǐÙt, F˙iǐt“C[, stct`t˜jctīt Sct˙ Yttjlt mtcttptctītÙt‘ ctīt Ft˜ltntmtı mtcttūtctât*t‘ oMt‘vt : utpttltt˙t˜$tctī (mtcttvtltt, vÙttÙt, mctlt˙$tltt Sct˙ Yt,tlt˛lct) ltitt cttvtctlttcttot` cttvtcttt˜Otctījt` ct“t˜š^ct:mtı ā*tātmtt*t ct`â ™Ft ctW mtcttūt ctât*t‘ : ct“Ùtt˜òtīctī mt`ctt ctītÙt‘-stit‘, t˜ctutÙt #t`$t, t˜mtætvlt, utt˜›tīÙttS˙ ctvtt`mttcttt˜ptctī stOÙtÙtvt, t˜vtotvt, GFtÛttj, ǐt#Ùt t˜vtOtt‘jCt Sct˙ GFtÛttj ctīt` uttt˜ctt˜OtÙtt˙ (cttǐÙtt˙ctīvt, stvt¸ctltt´) utÙttmt Sct˙ Ft¸vtctt‘mtvtı mttct˛t˜nctâ mt`ātt ctât*t‘ : stit‘ Gö`MÙt t˜mtætvlt, t˜vtFt¸CtlttS˙, utt˜›tīÙttS˙ (stOÙtÙtvt t˜vtotvt, GFtÛttj Sct˙ cttǐÙtt˙ctīvt) ctītÙt‘›tīct t˜vtÙtt`ptvt Sct˙ t˜ctctītmt, mttcttt˜nlt mt`ctt ctītÙt‘ctīltt‘ ctīt` Yttt˜ctctīt, vt`lt˛lct ctīt t˜ctctītmtı mttct¸xxx˜*tctâ mt˙it9vt : stit‘ Gö`MÙt t˜mtætvlt stt˜Ytitctvt, mttct¸xxx˜Ùtctī mt˙it9vtctīltt‘ ctīt` Yttt˜ctctītı mtcttūtctâī*ttCt ØtMttmtvt : stit‘, t˜ctmlttj, #t`$t, ltlcttOttvt, t˜vtptt` Sct˙ mtjctītjt` t˜mtætvlt, cttǐt utMttmtctīt`Ùt utt˜›tīÙttS˙ Sct˙ cÙtctntj, t˜vtCt‘Ùt ǐt`vtt, mtcut`utCt, t˜vtÙtt`ptvt, mt˙it9vt ytptš Sct˙ t˜ctòtt`Ùt t˜vtÙt˙$tCt, utt˜ltct`ovtı mtcttūtctât*t‘ Mtt`Ot : stit‘, Gö`MÙt, utmtto, t˜ctutÙt, #t`$t, ct“zttt˜vtctī Ftæt˜lt, Mtt`Ot mtctmÙtt ctīt ÛtÙtvt Sct˙ utt˜ltFttovt, Mtt`Ot utjÛtvtt, stt˙ctī.[t mt˙«tn ct`ī vtt`lt Sct˙ {˙it stt˙ctī.[tW ctīt mt˙mttOtvt, t˜ctMǐt`utCt Sct˙ t˜vtct‘Ûtvt, utt˜ltct`ovt sttǐt`Ktı mttcttt˜ūtctâ t˜›tâ*tt : stit‘ t˜ctutÙt #t`$t, stt˜Ytitct (mtcttˇoÙt, stvlÙtt`oÙt FlÙttt˜o) ltitt jCtvtt`t˜ltÙtt˙ı
mtcttūt ctât*t‘ : t˜Éltt`*t ØtMvt - Ftīt
Yttjlt ctW mttcttt˜ptctī mtctmÙttS˙ Sct˙ mtcttptctītÙt‘ ct`ī #t`$t-t˜ctcttn, Ftt˜jcttj Sct˙ pttt˜lt mtcytvOtt` mtctmÙttS˙ : on`pt, yttǐt--t˜ctcttn, ltǐttctī, ctītÙt‘jlt ocFtt˜òtÙttW
mttcttt˜ptctī stt“j mtt˙mct˛īt˜ltctīı1n. 3 ptvtmtt˙KÙtctīt`Ùt Ftæt˜ltÙtt˙-ptvtitCtvtt, Ft˙ptt`ctījCt utCttǐtt`, utt˜ltoMt‘ t˜ctt˜Ot, t˜Ét˜ctOt t˜jFttˇt˜š˙it t˜mtmšctı1n. 4 ptvtmt˙KÙtt
mt˙jÛtvtt stt“j ptvtmt˙KÙtt ittt˜ltctīt`ı 1n.5 ptvtmtt˙t˜KÙtctīt` oj stt“j stvt¸Fttlt, ptt`ctvt mttt˜jCtt` mt˙jÛtvtt stt“j GFtÙtt`t˜itlttı 1n.6 ptvtvt Mtt˜òtī, utptvtvt #tctltt ptvct oj stt“j ct˛lÙt¸ oj ctīt` utYttt˜ctlt ctījvt` cttǐt` pt“t˜ctctī stt“j mttcttt˜ptctī-sttt˜it‘ctī ctītjctīı 1n.7 ptvtmt˙KÙtt ct˛t˜æ stOÙtÙtvt ctīt` t˜ctt˜OtÙtt˙ı 1n.8 ptvtmt˙KÙtt t˜vtÙt˙$tCt stt“j Ftt˜jcttj ctīǐÙttCt stt“j pt“t˜ctctī Ftt˜jCttctı
13.1 Kt`ǐttW mtcytvOtt` vt˛t˜ctzttvtı 13.n Ftt`utCt mtcytvOtt` vt˛t˜ctzttvtı 13.3 j#tt stt“j stvÙt GFtctījCttW mt` mtcytt˜vtOtlt t˜[pttFvttW ctīt vt˛t˜ctzttvtı 13.4 vÙttÙttǐtt˜Ùtctī vt˛t˜ctzttvtı 13.5 ct“Ùtt˜òtīctī FtnÛttvt stt“j Ft¸vtj‘Ûtvtt ctīt` t˜ctt˜OtÙtt˙ stt“x x˜mtætvltı 13.6 stvt¸utÙt¸òtī cttvtct sttvt¸ct˙t˜Mtctīt` t˜Ftlt˛lct t˜vtotvt, stvt¸ctt˙t˜Mtctī FtjtctMt‘ stt“j mt˛ptt˜vtctīt`ı 13.7 [t`.Svt.X. xxx`ett`t˜itctī jt`itt` ctīt t˜vtcttjCt stt“j GFtÛttj 13.8 sttÙt¸t˜ct‘zttvt ctW vt˛t˜ctzttvtt` stvt¸ctt˙t˜Mtctīt` 13.9 utptvtvt ptt`ct t˜ctzttvt ctW mtt`jct stvt¸ct˙t˜Mtctīt` stt“j ctīt`t˜Mtctīt sttvt¸ct˙t˜Mtctīt` 13.10 cttvtct sttvt¸ct˙t˜Mtctīt` stt“j Mttjt`t˜jctī vt˛t˜ctzttvt ctW mtt˙t˜KÙtctīt`Ùt t˜mtætvlt ctīt stvtu¸ xXxx`itı
vt˛ t˜āt%ttvt : ØtMvt - Ftīt - n
1. Yttjltt`*t mtY*tltt ⭲ttˆj mt˙mct˛ât˜lt ctât t˜ātctâtmt : utt“it“t˜ltntt˜mtctī (Ft¸jtFttuttCt) (Ftt`t˜ǐtÙtt`t˜ǐtt˜itctī), ctOÙtFttutCt (ct`mtt`t˜ǐtt˜itctī) ltitt vtctFttuttCt Ùt¸it (t˜vtst¸t˜ǐtt˜itctī), sttet S`t˜ltntt˜mtctī (t˜mtvOt¸ mtYÙtltt) ct“t˜octī ltitt ct“t˜octīt`òtj, Mt¸®sttlt, ptvtpttltt`Ùt mt˙mct˛īt˜ltÙttW ctīt Ùtt`itotvtın. Yttjlt ctât` ūtvtmt˙K*tctât`*t j`Ktt t˜Ûtīt, Yttjltt`Ùt ptvtmt˙KÙtt ctW vt˛pttltt`Ùt ltitt YttuttÙtt` ltlct stt“j Gvtctīt t˜ctltjCt Yttjltt`Ùt ptvtmt˙KÙtt Gmtctīt` mt˙jÛtvtt stt“j ct˛t˜æ ctīt` utYttt˜ctlt ctījvt` cttǐt` ctītjctīı 3. FttjFtt˜jctī Yttjltt`Ùt mtcttpt cÙtctmitt ctīt` cttǐt mt˙jÛtvtt stt“j utct˛īt˜lt-Sctī mtctt`#tt ctCttˇßtct, Ft¸®uttit‘ ctīct‘, $tīCt stt“j Ft¸vtpt‘vct, pttt˜lt cÙtctmitt, Ùtptcttvtt`, cÙtctmitt ctīt` GlFtt˜òt ct`ī t˜mtætvlt, Fttj˙Ftt˜jctī Yttjltt`Ùt mtcttpt ctW t˜ctutctltt ctīt mt˙jÛtvttlctctī sttOttj: Yttjltt`Ùt mtcttpt Ftj ytt“æ Otct‘, pt“vt Otct‘, Fmǐttct ltitt F‘mttFÙtlt ctīt utYttctı 4. Yttjlt ctW vt˛t˜ctzttvt ctīt sttt˜ctYtt‘ct, ct˛t˜æ stt“x x˜ctctītmt-19 cttR Mtlttyot` stt“j 20 cttR Mtlttyot` ct`ī Mt¸vsttlt ctW YtvtztutMttmtctītW ctīt Ùtt`itotvt ptvtpttltt`Ùt stt“j pttltt`Ùt stOÙtÙtvttW ctW Yttjltt`Ùt vt˛t˜ctzttt˜vtÙttW ctīt Ùtt`itotvt, Yttjlt ctW vt˛ct“zttt˜vtctī stOÙtÙtvttW ctīt mtctctītǐtt`vt mctvFtı 5. Yttjltt`Ùt mtcttpt ltitt mt˙mct˛īt˜lt ct`ī stOÙtÙtvt ct`ī Ât˜°ctīt`Ct Fttj˙Ftt˜jctī stt“j mtctctītǐtt`vt ı 5. 1 Yttjltt`Ùt itt˙ct ct`ī t˜ctt˜Yt÷t Ft#t ct˛īt˜ut ctīt mttcttt˜ptctī mt˙it9vt, Yttjltt`Ùt itt˙cttW Ftj yttpttj-stit‘cÙtctmitt ctīt utYttctı 5. n YttuttF‘ stt“j Ottt˜ct‘ctī stǐFtmt˙KÙtctī-mttcttt˜ptctī, jtptvt“t˜ltctī stt“j sttt˜it‘ctī t˜mitt˜ltı 6. Yttjlt ctW ptvtpttt˜ltÙttW ctīt` stctt˜mitt˜lt-pt“ct-sttvt¸ct˙t˜Mtctīt` t˜Yt÷tltt, ptvtpttltt`Ùt ptvtmt˙KÙtt ctīt` mttcttt˜ptctī sttt˜it‘ctī ltitt YttuttF‘ t˜ctMt`utlttS˙ ltitt Gvtctīt t˜ctltjCt ptvtpttltt`Ùt mtct¸otÙttW ctīt` mtctmÙttÙtW-Yttt˜ct nmltt˙ltjCt, itjt`ytt`, $tīCt «tmltltt, t˜vtcvt mtt#tjltt, mctǐFt Ytt˜#tctī, mt¸t˜ctOttÙtW, yt`jt`ptittjtW,stǐFt jt`ptittj, mcttmiÙt stt“j Ftt`utCt t˜ctctītmt mtcytvOtt` Ùtt`ptvttÙtW-ptvtpttt˜ltÙttW ctīt t˜ctmittFtvt ltitt Gvtct`ī Ft¸vt‘cttmt ctīt` mtctmÙttÙtWı ctvtvtt`t˜lt, ctvtvtt`t˜lt ctīt t˜ctctītmt ltitt ptvtpttt˜ltÙttW ctīt t˜ctctītmt, ptvtpttt˜ltÙttW ltitt «ttctt`Ct ptvtmt˙KÙtt Ftj Mtnjt`ctījCt ltitt stt“ett`t˜itctījCt ctīt utYttctı 7. stvt¸mttt˜Ûtlt pttt˜ltÙttW, stvt¸mttt˜Ûtlt ptvtpttt˜ltÙttW ct stvÙt t˜FtÚ.[` ctittˇ ct`ī Mtt`utCt ltitt ct˙Ûtvt ctīt` mtctmÙttÙtW, stvt¸mttt˜Ûtlt pttt˜ltÙttW stt“j stvt¸mttt˜Ûtlt ptvtpttt˜ltÙttW ct`ī t˜ǐtÙt` mt˙ct“Ottt˜vtctī mt¸j#tt, mttcttt˜ptctī Ftt˜jctlt‘vt ltitt mtctctītǐtt`vt ptvtpttltt`Ùt mtcttpt: sttOt¸t˜vtctī utpttltt˙t˜$tctī mt˙mittsttW ctīt utYttct, ptvtpttt˜ltÙttW ltitt ctīctptt`j ctittˇ ct`ī t˜ǐtÙt` t˜ctctītmt ctītÙt‘›tīct ltitt ctīǐÙttCtctītjt` GFttÙtı(vt˛pttltt`Ùt Yttctvtt ctīt utto¸Ytt‘ct, ptvtpttltt`Ùt sttvot`ǐtvt ltitt lttotlctÙt ctīt` ltǐttMt, ct˛īt˜$tct ptvtpttt˜ltÙtltt)ı 8. GFt t˜vtct`Mtctto ct`ī ot“jtvt ltitt mcttOtt`vtlttW Ftjtvlt Yttjlt ctīt` ptvtpttt˜ltÙttW ctW mttcttt˜ptctī Ftt˜jctlt‘vtı 8. 1, ptvtpttltt`Ùt mtcttpttW Ftj t˜nvot Otct‘, F‘mttFÙtlt, Fmǐttct ltitt stvÙt Otcttˇ ctīt utYttctı8. n ptvtpttt˜lt ltitt jt°^-jtpÙt Yttjlt ltitt stvÙt o`MttW ct`ī ptvtpttltt`Ùt mtct¸otÙttW ctīt lt¸ǐtvttlctctī stOÙtÙtvtı 9. ptvtpttt˜ltÙt #t`$ttW, ptvtpttltt`Ùt vtt`t˜ltÙttW,Ùtt`ptvttÙtW, ptvtpttt˜ltÙttW ct`ī t˜ctctītmt ct`ī t˜ǐtÙt` ctītÙt‘›tīct stt“j Gvtct`ī t˜›tīÙttvctÙtvt ct`ī utMttmtvt ctīt Ft˜ltntmt, it“j mtjctītjt` mt˙it9vttW (Svtptt`stt`) ctīt` Yttt˜ctctītı 9. 1 ptvtpttltt`Ùt stt“j «ttctt`Ct t˜ctctītmt ctW vt˛t˜ctzttvt ctīt` Yttt˜ctctītı 9. n #t`$tctto, mttcutott˜Ùtctīltt, vt˛pttltt`Ùt Sct˙ jtptvt“t˜ltctī sttvot``ǐtvt ctīt` mtctPtvt` ctW vt˛t˜ctzttvt ctīt Ùtt`itotvtı
nn. t˜mtt˜xxxx ⭲tt˜Yt*tt˙t˜ītctât` (CIVIL ENGINEERING) - I - PART - 'A'
(a) Theory of Structures : Principles of superposition: reciprocal theorem; unsymmetrical bending: Determinate and indeterminate Strcture; simple and space frames: degree of freedom: virtual work; energy the orem; deflection off trusses; indeterminate beams & frames three months: equation; siope deflection and moment; distribution methods; column analcgy. Enegy menthods; appoximate and
cttǐt` Ftt˜jcttj, utcttmtt` ctītÙt‘ctīltt‘sttW cttǐt` Ftt˜jcttj, vtt`-Ft¸vut stmtcttvtltt, stt˜Otctītj utYt¸lct, Ftt˜jcttj mt˙jÛtvtt, pttt˜lt cÙtctmitt ctW utct¸Kt Ftt˜jctlt‘vt Sct˙ pttt˜ltctto numerical methods Moving Loads shearing force and bending moment diagrams, influence fines for
ctīt` mtctmÙttı t˜vtyt‘īt ātitt´ mt` mtcytt˜vOtlt mtctm*tt*tW : ytÛÛttW, ctt˜nǐttsttW ctÙtt`ct˛ætW, yttt˜OtlttW, t˜FtÚ.[` ctittˇ (stvt¸mttt˜Ûtlt pttt˜ltÙttW, stvt¸mttt˜Ûtlt ptvtpttt˜ltÙttW ltitt stvÙt t˜FtÚ[` ctittˇ) ctīt` mtctmÙttÙtWı t˜ātÛtītvt ctât` mtctm*tt : Ytitt`.[tFtvt, stcttjtitot´ Sct˙ t˜ctīMtt`j stFtÛttj, stFtjtOt, mtFt`īoFtt`Mt stFtjtOt, mt˙itt˜9lt stFtjtOt, mttcttt˜nctī t˜n˙Mtt, G«tctto, ct`MÙttct˛t˜òt, t˜ǐt˙it mtcytvOtt` stFtjtOtı mttcttt˜ūtctâ yt¸jtF*tt˙ : ctetFttvt, cttoctī õcÙt cÙtmtvt, t˜Yt#ttct˛t˜òt, Yt,°tÛttj, mtcutotÙtcttoı mttcttt˜ūtctâ mt˙jÛtvtt ctât` mtctm*tt*tW : t˜vtOt‘vtltt, yt`ctītjt`, ytvOt¸stt ctptotjt`, yttǐt-ßtct, ctt˜ǐtvt ytt˜mltÙtt˙, mttcttt˜ptctī t˜ctt˜ÛÚ÷tt`ctījCtı Yttjlt ct` ˙mttcttūt ctât*t‘
simple and continuous beams. Analysis of determinate and ideterminate arches. Matrix methods of analysis, stiffness and and flexibility matrice (b) Steel Design: Factors of safety and load factors; Design tension; compression and flexural members; built up beams and plategirders semi-rigid connection Design of Stanchions, slabs and gusseted bases; xxxxxx girders; roof trusses; industrial
ct`â #t`īt : yttǐt t˜ctctītmt, Ùt¸ctt t˜ctctītmt, ctt˜nǐtt Mtt˜òtīctījCt, ct˛ætW ctīt ctīǐÙttCt, Mttjt`t˜jctī cttvtt˜mtctī Sct˙ mttcttt˜ptctī vFt mt` yttt˜Otltt` ctīt ctīǐÙttCt, t˜FtÚ.[` ctittX and multistoreyed buildings, plastic design of frames and portais (c) R.C. Design: Working strees and
(stvt¸mttt˜Ûtlt pttt˜ltÙttW, ptvt pttt˜ltÙttW Sct˙ stvÙt t˜FtÚ.[` ctittˇ) ctīt ctīǐÙttCt, «ttcÙt t˜ctctītmt, vtitjt`Ùt mttct¸xxx˜Ùtctī t˜ctctītmt, t˜Ûtt˜ctīlmtctīt`Ùt Sct˙ ctvtt˜MÛtt˜ctīlmtctīt`Ùt limit State methods of design: Design of slabs, Simple and continuos beams rectangle T& L sections,
mtcttptctītÙt‘, stt“ett`t˜itctī mtcttptctītÙt‘ mt¸j#tt Sct˙ stFtjtOtt` mt¸Ottjı
n1. vt˛ t˜āt%ttvt : ØtMvt Ftīt - 1
1.1 vt˛-t˜ctzttvt ctīt stit‘ ltitt #t`$t 1.n stvÙt t˜ctutÙttW ct`ī mttit mt˙yt˙Ot : Ft˜ltntmt, stit‘Mttvt, mtcttpt t˜ctzttvt, ctvtt`t˜ctzttvt jtptvtt`t˜lt t˜ctzttvt, ptt`ct t˜ctzttvt (ǐttFFtī mttF˙mt) t˜Ûtt˜ctīlmtt t˜ctzttvt 1.3 vt˛-t˜ctzttvt ctīt` utct¸Kt MttKttS˙, Gvtctīt #t`$t uttmt˙t˜itctīltt (ctâ) mttcttt˜ptctī -mtt˙mct˛īt˜ltctī vt˛t˜ctzttvt (Kt) Mttjt`t˜jctī ltitt pt“t˜ctctī vt˛
columns. Footing-single and combinate raft foundations, Elevated water tanks, encased beams and columns, Methods and systems of prestressing: anchorages, losses in prestress.
Part- B
(a) Fluid Mechanics : Dynamic of fluid flow - Equations of continuity. xxxxxx and momentum. Xxxxxxxx’x
vertices flow nit Dimenslonal analysis and its; application to practical problems. Viscous flow-flow
t˜ctzttvt (it) Ft¸jtlttlctt`Ùt vt˛ t˜ctzttvt 1.4 cttvtāt t˜ātctâtmt ltstt cttvtāt ctât ⭲ttt˜ātYtt‘āt : pt“ct t˜ctctītmt S`t˜ltntt˜mtctī Ftt˜jut`#Ùt ctW t˜ctctītmt ct`ī t˜mtætvlt, uttit[tt˜ct‘vtt` theorem; caviation. Velocity potential and steam function, rotational and irrotational flow. free and forced
[tt˜ct‘vtt`, ltitt Gòtj [tt˜ct‘vtt` ctītǐt, t˜ātctâtmt ctât ⭲ttOt¸t˜vtctâ mt˙t˜Mīt° t˜mtætvlt : t˜ctctītmttlctctī ptt`ct t˜ctzttvt ct`ī MtyotW ltitt stctOttjCttsttW ctīt` mt˙t˜#tFlt vFtj`Ktt between static and moving parallel plates-flow through circular tubes; film lubrication. Velocity disribution
([tǐt ctīt t˜vtÙtct, ctīt`Ft ctīt t˜vtctÙt, itt“mt ctīt t˜vtÙtct) mtcttvtt˙ltjltt stt˜YtmtjCt, stvtc¸ ttīǐtt` t˜ctt˜ctījCt, ctt“pt`Fctī t˜ctctītmt cÙtctt˜mitt˜lt stt“j ctitt´ctījCt ct`ī t˜mtætvlt,
in laminer and turbulent flow: critical velocity; Losses, Stampton diagram Hydraulic and energy grade
utct¸Kt vtjyttvtj ctt˜it‘ctīt`, lt˛ltt`Ùt ctCt‘ ltitt Ûtlt¸it‘ Ùt¸itt`vt ptt`cttMct vtjyttvtj itCt, nt`t˜ctvttF[t stt“j nt`t˜ctt˜vt[t` ctīt ctitt´ctījCt, cttvtct ctīt stt˜ctYtt‘ct ltitt t˜ctctītmt fines, siphons; pipe network- Forces on pipe bends. Compressible flow, Adiabatic and isentropic flow,
-- nt`ctt` Fj`ct:šmt ltitt nt`ctt` mt`t˜FtÙt˙mtı 1.5 t˜vtcvtt˜ītt˜Ktlt ctât ūttt˜ltāt˛t˜òtctâ mltj, t˜ātMt`<tlttu˙ ⭲ttˆj t˜ātltjCt : (ctâ) stlÙt˙lt vttltvt Fttct‘ ptt`cttMct vtj yttvtj itCt-
-sttt˜jÙtt`t˜Ftt˜itctīmt, (Kt) ot˜#tCt ltitt Fttct‘ stutīt`ctīt` nt`t˜ctt˜vt[Fǐtt`t˜mtS˙it,t`Ftmt / sttmš`^ǐtt`t˜Ftt˜itctīmt stutīt`ct`īvtmt, Ft`jit,t`Ftmt / sttmš`^ǐtt`t˜Ftitctīmt (it) Ft`j˙it,t`Ftmt -
- ntctt`Fj`ct:šmt --pttcttt˜vtct:mt, nt`ctt`Fj`ct:šmt ct“t˜ctīt˜vtvtt˜mtmt (‹t) ntctt` ntF[ǐt ytjit“vtt˜mtmt ([) t˜xxXx[it‘ǐt cttvtct ǐtt MttFt`ǐt 2 sttFt mt`všmt (ct:ǐttt˜mtctīt`
subsonic and supersonic velocity; Mach number shock wave, water hammer. (b) Hydraulic Engineering : Open channel flow- uniform and non-unfirms flow, beat hydraulic cross-section; Specific energy and critical depth, gradually varied flow; classification of surface profiles; control section;
uttvFt) cttGvš ctītctˇǐttFšmt (utCttYtt` uttvFt) (Ût) jt`t˜[t˜MtÙtvt cttvtct (Ú) nt`ctt` mt`t˜FtÙtmt ›tītct`÷ttvt,, t˜«tcttǐ[t`, Ûtt˙t˜ǐtǐt`[ ptt`cttMct ltitt stvÙt ptt`cttMcttW mt` standing wave flume; Surges and waves. Hydraulic pump. Design of canals : Unlined channel in
mtcytt˜vOtlt t˜ctctītmt, t˜ctltjCt ctīt` mtctPtvt` ct`ī t˜ǐtS n¸S vtctt`vt t˜ctÛttj ltitt ctn¸t˜ctutÙtctī Ât˜°ctīt`Ctı 1.6 vtjcttvtjitCt ctīt` t˜ctctītmtcttot` utct˛t˜òt ltitt ctitt´ctījCt,
stvÙt mltvtOttt˜jÙttW ct`ī mttit mt˙yt˙Ot vtjcttvtjitCttW ctīt sttt˜Cctctī t˜ctctītmt cttvtct stt“j ctvtcttvt¸ut ctīt` lt¸ǐtvttlctctī Mttjt`t˜jctī jÛtvtt, vtjctvttvtjitCttW ctīt itctvt, ct˛#tt`Ùt ltitt Ytt“t˜ltctī Ftt˜jt˜mitt˜ltÙttW ct`ī mttit stvt¸cttīǐtvt mtt`Ot` Kt.[` ntvt` ct`ī ctītjCt ct˙īctītǐt ctW n¸S Ftt˜jctlt‘vt stt“j Fmtct`ī Ftt˜jCttct ı1.7 mtt˙mct˛ât˜ltctâ t˜ātctâtmt : uttit“t˜ltntt˜mtctī mt˙mct˛īt˜ltctī ctīt` t˜ctmlt˛lt vFtj`Ktt : (ctâ) Ft¸jtFttuttCt (Kt) ctOÙt FttuttCt (it) vtct FttuttCt (‹t) ltt«tFttuttCt (Ûttǐtctīt`t˜ǐtt˜itctī) ([.) lttct,-- ctīt˙mÙt Ùt¸it (Ût) ǐtt“nÙt¸itı
n.1 Ftt˜jāttj : Ftt˜jcttj it˛nmitt` Sct˙ it˛n mtcttn ctīt` Ftt˜jYttutt stt“j utvFtt`ctījCt, ctt“t˜ǐtctī mt˙jÛtvtt Sct˙ ctītÙt‘, Ftt˜jcttj ctW t˜mitjltt Sct˙ Ftt˜jctlt‘vt Ftt˜jcttj ct`ī stOÙtÙtvt ctW ctitt´ctījCt ltitt utt˜›tīÙttlctctī Ât˜°ctīt`Ct, Mtnjt`ctījCt, stt“ett`t˜itctīt`ctījCt, t˜Mt#tt ltitt vttjt` sttvot`ǐtvt ct`ī utYttct, Ftt˜jcttj ctīt` mttct‘Ytt“t˜ctctīltt-- Sctī t˜ctct`Ûtvttı n.n yt˙Ot¸ltt ctât` ⭲tātOttjCtt : yt˙Ot¸ ctīt` Ftt˜jYttutt, stitcÙtitctvt t˜vtut`Ot, ytt˜nt˜ct‘cttn ltitt st˙lt‘t˜ctcttn, ct˙Mttvt¸›tīct ct`ī t˜mtætvlt utctītj ltitt ctītÙt‘, yt˙Ot¸ltt ct`ī jtptvtt`t˜ltctī ltitt t˜ctt˜Otctī Ftnǐtt, Sctītvctt˜Ùtctī t˜ÉFt#tt`Ùt ltitt t˜Xx`Ktt` ct˙Mttvt¸›tīct, mt˙ltt˜lt mt˙Ftct‘ī ltitt Ftt˜jFttjctī mt˙ltt˜lt mt˙Ftct‘ī, yt˙Ot¸ltt cttÛtt` Mtyotctǐtt` ctitt´ctījCt ltitt Mtyotctǐtt` stOÙtÙtvt ct`ī GFttitct, ct“$tt` ltitt ct˙Mtt›tīctı n.3 t˜ātāttn : Ftt˜jYttutt, utctītj stt“j ct“cttt˜nctī utCttǐtt` ctīt` t˜ctt˜Yt÷tlttS˙, t˜ctcttn ctīt`
ailuvium, the critical tractive stress, principles of sediment transport, regime theories lined charnels; hydraulic design and coms analysis; drainage behind lining. Canal structure: Designs of regulations work; cross drainage lalls, apeducts, metering flumes etc. Canal outlets. Diver Headworks: Principle of design of different part on impermeable and permeable foundations; Xxxxxx’x theory; Energy dissipation. Sediment exclusion. Dams : Design of rigid dams, earth dams, forces acting on dams stability analysis, spillways-different types and their suitability. Design of spillways. (c) Xxxxx and Xxxx xxxxx: Soil Mechanics and foundations Engineering. Soil Mechanics. Origin and classification of soils: Atterburg limit, void ratio; moisture contents; permeability; laboratory and field tests, seepage and flow nets, flow under hydraulic structures. Uplift and quik sand condition, unconfined and direct shear tests; triaxial test; earth pressure thories, stability of slopes. Theories of soil consolidation; rate of settlement
mttct‘Ytt“t˜ctctī Ftt˜jYttutt ct`ī yttj` ctW ctto t˜ctctto ct`ī t˜ctt˜vtÙtct stt˜OtcttvÙt, t˜vtt˜o‘° t˜vtMt`Ottlctctī ltitt ct¸òtī utCttt˜ǐtÙtt, t˜ctcttn ct`ī utctītj ltitt vFt, on`pt, ctOtt- Total and effect stress analysis, pressure distribution in soils; Xxxxxxxxxxx and westerguard theories.
-cttǐÙt, t˜ctcttn stpttÙtitt` stt“j ct“cttt˜nctī t˜mitjlttı
3.1 mt˙mct˛īt˜lt mctvFt stt“xx xxx˜›tīÙtt ctīt stOÙtÙtvt, mt˙mct˛īt˜lt ctīt` stctOttjCtt, mt˙mct˛īt˜lt ctīt mctvFt mt˙mct˛īt˜lt mtYÙtltt stt“j mtcttpt ctW mt˙yt˙Otı 3.n mtt˙mct˛īt˜ltctī Ftt˜jctlt‘vt Sct˙ mttcttt˜ptctī Ftt˜jctlt‘vt ctīt` stctOttjCttı 3.3 mttcttt˜ptctī mt˙jÛtvtt ltitt mttcttt˜ptctī mt˙it9vt, Yttt˜ctctīt -- t˜ctMǐt`utCt Sct˙ mttcttt˜ptctī vt`šctct‘ī, mt˙mittvt, mtcttn, mtct¸otÙt, mttcttt˜ptctī mltjt`ctījCt t˜mtætvlt ltitt mctvFt, t˜mitt˜lt ctit‘, ltitt Ytt˜òtī, t˜ǐt˙it, itt˜ltMtt`ǐtltt ctīt` utct˛t˜òt Sct˙ utctītjı 3.4 mtcttpt ctīt` stctOttjCttı 3.5 mt˙mct˛īt˜lt ltitt mtcttpt ct`ī stOÙtÙtvt ct`ī Ât˜°ctīt`Ct ct:ǐttt˜mtctīt` t˜ctctītmtctto, vtctt˜ctctītmtctto, mt˙mct˛īt˜lt Ftt˜jt˜mitt˜ltctīt`, S`t˜ltntt˜mtctī, ct`Mt`MÙtctto
Soil stabization in foundation Engineering, Bearing capacity of Footing; pills and xxxxx, design of retaining walls; sheet piles and caissons, Machine foundations.
t˜mtt˜xxxx ⭲tt˜Yt*tt˙t˜ītctât` (CIVIL ENGINEERING) PAPER- II (PART- A)
(a) Building Construction : Building Materials and construction- timber, stone, brick, cement, steel sand, mortar, concrete, paints and varnishes, plastics, water proofing and damp proofing materials, Detailing of walls, floors, roofs, staircases doors and windows. Finishing of building plastering. pointing.
stt“x x˜ctmtjCtctto, mtjÛtvttlctctī-utctītÙt‘ctto, mt˙mct˛īt˜lt stt“j cÙtt˜òtīlct mtcÙtctntjctto, utltt`ctīctto, mt˙zttvttlctctī Ât˜°ctīt`Ct ltitt vtct--vt˛pttt˜lt ctCt‘vt, Gòtj- painting, etc. Use of building codes. Ventilation, air conditioning, Building estimates and specifications.
-mt˙jÛtvttctto stt“j Gòtj sttOt¸t˜vtctīlttcttoı 4.1 Otct‘ ctīt` Ftt˜jYttuttS˙ stt“j ctītÙt‘ Otct‘ ct`ī stOÙtÙtvt ctW cttvtctt˜ctzttvtt`Ùt Ât˜°ctīt`Ct tc˜ tctītmtcttot`, ctvtt`ct“zttt˜vtctī ltitt
utctītÙt‘cttot`, pttot, stt˜YtÛttj ltitt pttotitjt` Ftt˜jYttuttS˙ ltitt ctītÙt‘ ltitt ctītÙt‘ctīltt‘ Ft¸pttjt`, stt`Ptt, Yttctvt stt“j ltt˙t˜$tctī, Otct‘ stt“j stvt¸‰tvttW ctW utltt`ctīctto,vt˛pttt˜lt stt“utt˜Ot t˜ctitctī stt“j stvt¸‰tvt, Ftt˜jYttutt stt“j Gvtct`ī stOÙtÙtvt ct`ī Ât˜°ctīt`Ct -- mt˙jÛtvttlctctī, utctītÙt‘cttot` stt“j utt˜›tīÙttlctctī Ft#t stt“j sttt˜it‘ctī stt“j jtptvtt`t˜ltctī mt˙jÛtvtt ct`ī mttit mt˙yt˙Otı
5.1 ⭲tst‘, #t`īt uāt˙ Øtmt˙t˜itctâltt : t˜Mtctītjmtcttnltt, ctÚǐtt` Ftctī.[vt` cttǐt`, Ûttjcttnt, ct˛īt˜utyttitcttvtt` Ftj t˜vtYt‘j jnvt` cttǐt` mtct¸otÙttW stt“j stvÙt sttt˜it‘ctī
Construction scheduling PERT AND CPM methods, base chars. (b) Railways and Highways Engineering : Railways – Permanent way ballast, sleeper, chair and fastenings; point and crossings, different types of turn outs, cross-over setting out of points. Maintenances of track super elevation, creep of rails, ruling gradients, track resistance reactive effort curve resistance, Station yards and machines, station buildings; platform sidings, turn tables. Signals and interlocking; level crossings.
cÙtctmttÙttW ctW GlFttovt, t˜ctltjCt ltitt GFtÙtt`it ctīt` t˜vtÙt˙t˜$tlt jKtvt` cttǐt` t˜mtætvlt, stt“FtÛttt˜jctī ltitt lttt˜lctctī ÛtÛtt‘--[tǐšvt, ctītǐt‘ Ftt`t˜ǐtÙt`vtt` ltitt cttct:mt‘ ctīt Road and Runways : Classification of roads planning geometric design. Design of flexible and rigid
Ât˜°ctīt`Ct stt“j vtÙtt sttt˜it‘ctī vt˛t˜ctzttvt, t˜ctt˜vtÙtct, GFtntj ctmlt¸t˜ctt˜vtÙtct, cÙttFttj stt“FtÛttt˜jctī t˜ctt˜vtÙtct yttpttj stit‘ctÙtctmitt, ct˙˛o ptvtpttt˜ltı 5.n mt“ætt˜vltctī
sttOttj, jtptvt“t˜ltctī mt˙it9vttW ct`ī utctītj - mtcttn sttt˜oct ptvtptt˜lt, stt˜OtvttÙtctīctto, jtpÙt, Ytt˜òtī utt˜Otctītj Sct˙ ct“Otltt ctīt` mt˙ctīǐFtvtt sttt˜octtmtt` stt“j Kt`t˜ltnj mtcttpttW ct`ī mttcttt˜ptctī t˜vtÙt˙$tCt t˜ctt˜Ot ltitt vÙttÙtı
pavements; subbase and weathering surfaces. Tram engineering and traffic survey, intersections roads signs, signals and markings.
(c) Surveying : Plan table Surveying Equipment & methods, solution of 3 & 2 point problems. Errors
6.1 t˜ctctītmttlctctī vt˛-t˜ctzttvt Ftt˜jut`#Ùt ctīt` stctOttjCtt t˜ctctītmt ct`ī utt˜ltcttvt, ct:ǐttt˜mtctīt` t˜ctctītmttlctctī t˜mtætvlttW ctīt` mtctt`#tt Ùtt`ptvtt ytvttvt` stt“j Ùtt`ptvtt ytæ and precautions. Triangulation. Grades Baseline and its measurement. Statelite station, intervisibility
t˜ctctītmt ctīt` stctOttjCtt mtnYttitt` t˜ctctītmt ctīt` stctOttjCtt, mt˙mct˛īt˜lt Fttt˜jmitt˜ltctīt` stt“x x˜vtj˙ltj t˜ctctītmt, t˜ctmittFtvt stt“j Ft¸vtctt‘mtı
7.1 vt˛t˜ctzttvt ctW stvt¸mt˙Ottvt ctīt` stctOttjCtt, t˜ǐt˙it ctit‘, t˜ctÛttjOttjt stt“j vtt`t˜ltMttvt ct`ī mt˙oYt‘ ctW t˜ctutÙtctmlt¸ stt“j stvtctvtt`Ùtltt, Ftæt˜ltMttvt Ftæt˜ltÙtt˙ stt“j ltctīvtt`ctīt` ctW st˙ltj vt˛t˜ctzttvt stvt¸mt˙Ottvt ctīt` utct˛īt˜lt stt“x x˜ctMǐt`utCt, utlÙt#tcttot` stt“j stutlÙt#tcttot` Ât˜°ct`īCt, mttcttt˜ptctī Sct˙ mtt˙mct˛īt˜ltctī vt˛t˜ctzttvt ctW
of stations; Great Trigonometrical Survey of India. Errors and least squares method general methods, of least quares method with interdisciplinary approach. Adjustment of level nets and triangular nets. Matrix notation solution. Layout of curves; Simple, compound, reverse transition and vertical curves.
lt¸ǐtvttlctctī Ftæt˜ltÙttW, utct˛īt˜lt, Gö`MÙt ltitt lt¸ǐtvttlctctī Ftæt˜ltÙtt˙, sttOttj mttct«tt` ct`ī mt˙ctīǐtvt ctīt` cttǐt ltctīvtt`ctī mtt#ttlctītj, Yttitt`otj ltitt ut`#tCt ctīt` stvÙt Projects surveys and layout of Civil Engineering works such as buildings, bridges, tunnels and
uttCtt˜ǐtÙtt˙, mttt˜ÛtÙtt˙, utMtvttctǐtt`, (ct`īmt mš[t`) t˜ctmlt˛lt utctījCt stOÙtÙtvt Ftæt˜ltÙtt˙, ptt`ctvt ct˛òt ltitt stvÙt ßtt`lt, ctt“t˜Ktctī ctCt‘vt, ct˙Mttctǐtt`Ùt Ftæt˜ltÙtt˙, mtnYttt˜itltt zttvt ltitt stt˙ctīǐtvt (Ftt`.Sǐt.S.) mtnYttt˜itltt ltt`›t stt˙ctīǐtvt (Ftt`.sttj.S.) t˜ctMǐt`utCt : t˜vtct‘Ûtvt ltitt stOÙtÙtvt mttct«tt` ctīt utmlt¸ltt`ctījCtı
8.1 cttvtct sttvt¸ct˙t˜Mtctīt` ctīt` stctOttjCtt ltitt utct¸Kt YttuttS˙, t˜ctzttvt ltitt sttÙt¸t˜ct‘zttvt ctīt` stvÙt YttuttsttW ct`ī mttit Fmtctīt mtcytvOtı 8.n cttvtct ct` sttvt¸ctt˙t˜Mtctī t˜mtætvlttW ct`ī stOÙtÙtvt ctīt` Ftæt˜lt, Fttt˜jcttt˜jctī stOÙtÙtvt (ct˙Mttctǐtt` t˜ctMǐt`utCt, Ùt¸ict stOÙtÙtvt, Fttt˜ǐtlt ytÛÛtt, mtnÙt¸ict Ftæt˜lt, pt“ct sttvt¸ctt˙t˜Mtctī Ftæt˜lt, it¸Ctmtt$tt`Ùt stt“j ct`īt˜jÙtt` štFFt t˜ctMǐt`utCt) pt“ct jtmttÙtt˜vtctī Ftæt˜ltÙtt˙, utt˜ltj#tctī Ftæt˜ltÙtt˙, [t`.Svt.S. ltctīvtt`ctī stt“j Ft¸vt‘ mtnÙtt`itt` ltctīvtt`ctīı 8.3 Ùt¸ict stOÙtÙtvt Ftæt˜lt, t˜vtut`t˜Ûtltltt, stvt¸ctt˙t˜Mtctī stt˙ctīǐtvt, Ùt¸ict stOÙtÙtvt Ftæt˜lt ctīt ctlt‘cttvt mltj stt“j Fmtct`ī stvt¸utÙtt`itı 8.4 cttvtct mtcytvOtt` ct`[ǐt stvt¸ctt˙t˜Mtctīltt : Fttt˜jcttt˜jctī stOÙtÙtvt Sctīǐt ctītjctī, ytn¸ctītjctī, cttvtct ctW ct˙Mttvti¸ tlt ǐt“itǐt,mtyt ǐt“itǐt, ytn¸ sttvt¸ct˙t˜Mtctīlttı 8.5 stvt¸ct˙t˜Mtctī ytn¸vFtctto stt“j ÛtÙtvt ctīt` stctOttjCtt ct`[ǐt ptvtmt˙KÙtt ctīt` OttjCtt, nt[t`t˜ctvtctit‘ ctīt t˜vtÙtct, sttct˛t˜òt,-GlFtt˜jctlt‘vt ctW ctīctt` stt“j Ftt˜jctlt‘vt ct`ī ctītjCt, GlFtt˜jctlt‘vt, Sctītctīt`Ftvt, utctpt‘vt, ÛtÙtvt ptvtvt ltitt stvt¸ctt˙t˜Mtctī stvltj, jòtī mtcytt˜vOtÙttW ltitt it“j jòtī mtcytt˜vOtÙttW ctW mtcttitct, sttvt¸ctt˙t˜Mtctī Yttj, jòtī mtcytvOttW ltitt (ctct`j`, FtīFt`īj, ÛtÛt`j`) ct“cttt˜nctī mtcytvOttW ctW stvt¸ctt˙t˜Mtctīltt ctīt utYttct (cttvtct sttvt¸ct˙t˜Mtctīt` ct`ī stOÙtÙtvt ct`ī t˜ǐtÙt` mtt˙t˜KÙtctīt`Ùt ltitt mtcYttcÙtltt Ftæt˜lt)ı 8.6 cttvtct ctW
hydroelectric project. Introduction to photo grammetry and Remote sensing.
PART- B
(a) Water Resources Engineering : Hydrology-Hydrologic cycle: precipitation; evaporation- transpiration and infiltration hydrographs; units hydrograph; units hydrograph: Flood estimation and frequency. Planning for water Resources Ground and surface water resources; surface flows. Single and multipuropose projects storage capacity, reservoir losses; reservoir silting flood routing. Benefit cost ratio, General Principles of optimization. Elements of water Resources management. Water requirements for crops-quality of irrigation water, consumptive use of water, water depth and frequency of irrigation; duty of water; irrigation methods and efficiencies. Distribution system for canal irrigations determination of required channel capacity channel losses. Alignment of main and distributary channels.
Continued....
Waterlogging its causes and control, design of drainage system; soil salinity. River training principles Traction : Various Systems of track electrification and their comparison. Mechanies of train movement. and methods storage worktypes of Dams (including earth dams) and their charcterisitics, principles Estimation of tractive effort and energy requirement. Electification and their comparison, Mechanics of of design, criteria for stability. Foundation treatment; joints and galleries. control of seepage. train movement Estimations of tractive effect and energy requirement Traction motors and their
(b) Sanitation and water supply : Sanitation-site and orientation of Buildings, ventilation and damp- characteristics. (6) Power Systems and Protection : 1. Types of Power Station : Selection of site. proof course house drainage; conservancy and water-borne system of waste disposal sanitary General layout of thermal hydro and nuclear stations. Economics of different types. Base load and peak appliances, latrines & urinals. (c) Environmental Engineering : Elemetary principles of echology and load stations. Pumped strorage plants. 2. Transmision and Distribution : A.C. and D.C. Transmission eco systems and their inter-action with environment. Engineering activitiy and environment pollution. systems. Transmission fine parameters and calculations. Performance of short. Medium and long Environment and its effect on human health and activity. Air environment: major pollutants and their transmission fine A.B.C.D. parameters. Insulators. Mechanical design of overhead tramsmission fines adverse effects, types of are cleaning devices. Water quality; parameters, advers effects, monitoring, and Sag calculation, corona and its effects, Radia interference. EHV AC and HVDC transmission fines salt purification of streams. Solid wastes; collecting system and disposal methods, their selection and undeground cables. Per unit representation of power system. Symmetrical and unsymmetrical fault operation. Typical feature of water distribution systems; Demand, available need network analysis, analysis. Symmetrical components and their applicaton to fault analysis. Load flow analysis using gauss- storage, corrosllon. Typical features of sewerage systems: Permissible velocities. Partial flow in seidal and Xxxxxx-Raphson methods. Fast de-coupled load flow. Steady state and transient stability. circuler servers, non-circuler section, corropsion in servers, construction and maintenance sewer Equal area criterion Economic operation and power system incremental fuel costs and fuel rate. Penalty appurtenances. Pumping of sewage, pumping standards and systems, environmental management. factors. XXXX and AVR control for real time operation of inter connected power system. 3. Protection
n3. *tt˙t˜ītctâ ⭲tt˜Yt*tt˙t˜ītctât` (MECHANICAL ENGINEERING) : PAPER - 1 (PART - A)
: Principal of arc extinction, Classificaltion of circuit bravke. Restriking phenomenon. Calculation of
1. Theory of Machines : Kinematies and dynamic analysis of planer mechanism. Belt and chain drives, restriking and recovery voltages. Interruption of small inductive and capacity Ne currents. Testing of
Gears and gear trains. Cams. Flywheel. Govermors. Balancing of rotations and reciprocating masses. Circuh Breakers. 4. Relaying Principles : Primary and back-Up relaying over current, differential single and multi cylinder engines. Free, forced and damped vibrations (single degree of freedom) Critical impedance and direction relaying principles. Constructional details. Protection schemes for transmisson
speeds and whirling of shafts. Autamatic controls.
fine transformerj generator and bus protection. Current and potentiel transformer and their applications
2. Machanics of Solids : Stress strain relationship and analysis (in two dimensions). Strain energy in relaying traveling waves. Protection against surges, Surge impedance.
concepts. Theories of failure. Principal stresses sand strains. Xxxx’x construction. Uniaxial loading. Thermal stresses. Beams bending mement shear force, ending stresses deflection. Shear stress
(Or)
Section- C (Light Current)
distribution. Torsion of shafts. Helical springs. Thin and thick walled pressure vessels . Shrink fafs Columns. (7) Communication Systems : Amplitude. Frequency and phase modulation and their comparison.
Rotating discs. 3. Engineering Materials : Structure of solids-basic concepts. Crystalline materials Generation and detection of ampldute frequency, phase and pulse modulated signals using oscillators.
imperfections. Alloys and binary phase diagram-Structures and properties of common engineering Modulators and demodulators. Noise problems Channel efficiency. Sampling theorem. Sound and vision
materials and applications. Heat treatment of steels. Polymers. Ceramics. Composed materials.
4. Manufacturing Science : Manufacturing process basis concepts mechanics of Metal cuffing.
PART- B
broadcast transmitting and receiving systems. Antennas and feeders. Transmission fines at audio, radio
and ultrahigh frequencies. Fiber optics and optical communication systems. Digital communications pulse
code modulation. Data communication state-lide communication. Computer communication system- LANISDN ect. Electronic Exchanges. (a) Microwaves : Electromagetic waves unguided media wave
Merchant’s force analysis. Xxxxxx’x tool life equation. Machaniability. Economics of machining. Aldomadion. guides. Cavity resonators and Microwave tubes, Magnetrons, Klystrons and TWT. Solid State microave
NC and CNC. Recend machining method-EDM, ECM, EMB, LMB, XXX and USM. Analysis of forming devices. Microwave amplifiers. Microwave receivers Microwave filters and measurements. Microwave proceses. High energy rate forming. Jigsand fudures.Cutting tools Gauges, Inspection of lengths angles antennas.
and surface finish. 5. Manufacturing Management : Product development. Value analysis. Braeak even
analysis. Fore-casting techniques Operations Scheduling. Capacity planning. Assembly Fine balancing. CPM and PERT Inventory control. ABC analysis, EOQ model, Material requirement. Planning Job design,
n5. ⭲t˙nt`ūtt` mttt˜nl*t : Øtstct ØtMvt-Ftīt mttt˜nl*t *t¸it (19 āttR Mtlttyot`) ctât t˜ātmlt˛lt t˜ātātjCt
Job standards. Method study and work measurement. Quality management. Qulaity analysis, Control Fmt utMvt-Ft$t ctW t˜ctt˜ǐtÙtct ct[‘˛mtctit‘, ctīt˘ǐtt˜jpt, Mt`ǐtt`, ctīt`š˛mt ǐt“cyt, n“ptt˜ǐtš,it“ctīj`, [t`ct`īvmt š`t˜vtmtvt, jtytš‘, yt,tGt˜vt˙it S. mtt`. t˜mctvtctvt‘, [t`. ptt`. jt˘mt`št`,
chart. Acceptance sampling. Total quality management. Operations research. linear programming. ctītjt˜ǐtǐt Sct˙ jt˜mctīvt ctīt` jÛtvttsttW ct`ī t˜ctMt`ut mt˙oYt‘ ctW 1798 mt` 1900 ltctī ct`ī st˙«t`ptt` mttt˜nlÙt ctīt stOÙtÙtvt mtt˜cctt˜ǐtlt nt`ittı
Graphical and simplex method. Transportaion and assignment models. Sinigle serve quencing model. utlÙt#t stOÙtÙtvt stFt`t˜#tlt nt`ittı utMvt S`mt` FttÚW pttÙtWit` t˜ptvtmt` t˜vtOtt‘t˜jlt ǐt`KtctītW ct`ī t˜ctutÙt ctW FttCt‘ pttvtctītjt` ct`ī mttit-mttit Gmt Ùt¸it ctīt` utct¸Kt mttt˜nt˜lÙtctī
6. elements of Computation : Computer organization. Flow charting features of common computer utct˛t˜òtÙttW ct`ī mtcytvOt ctW Ytt` pttvtctītjt` ctīt` pttBÛt nt`itt`ı Ùt¸it ctīt` mttcttt˜ptctī Sct˙ mtt˙mct˛īt˜ltctī Yttt˜ctctīt ct`ī mtcytvOt ctW Ytt` utMvt FttÚ` pttÙtWit`ı
languages. Fortran. Dbase, Lotus, 1-2-4, c. Elementary programming.
*tt˙t˜ītctâ ⭲tt˜Yt*tt˙t˜ītctât` (MECHANICAL ENGINEERING) : PAPER - II (PART - A)
⭲t˙nt`ūtt` mttt˜nl*t : t˜Éltt`*t ØtMvt-Ftīt
Fmt utMvt Ft$t ctW t˜vtOtt‘t˜jlt Ftt9˛Ùt Ft¸mltctītW ctīt cttǐt stOÙtÙtvt stFt`t˜#tlt nt`itt FmtctW Gcctt`octtjtW ctīt` mtctt`#tt Ùtt`iÙtltt ctīt` pttBÛtvt` cttǐt` utMvt FttÚW pttÙtWit`ı
1. Thermodynamics : Basic concepts First law and its application. Second law its corollaries and 1. t˜ātt˜īt*tct Mt`ctämtt˜Ft*tj : š˛ct`ǐit vttFš, n`vtjt` 4-Yttit, 1, n`ctǐt`š, o š`cFt`mš n. t˜ctīšvt : Ft“jt[tFpt ǐttmš yt¸ctī 1 Sct˙ 2 3. ūt`vt ⭲ttt˜mšvt : uttF[ SC[ applications. Xxxxxxx and T-ds equation. Clapeyron equation. Availabiltiy and irrevensibility. 2. Heat ut`pt¸t˜[mt 4. āt[˛‘mtātst‘: Fctt`t˜jt˜ǐtšt` stt`[, t˜švšvt‘ Sytt` 5. t˜[ct`âvmt : «t`š Sct:mt`Ft`ct:š`Mtvmt 6. nttnct ntt`vt : o Fttctj SC[ o iǐtt`jt` 7. t˜ātt˜īt*tct itt`t˜ī[˙it : ǐttF‘ Transfer : Laws of heat transfers One and two dimensional steady stase heat conduction. Heat transfer stt˘Ftī o Ft:ǐttFpt 8. Fš˛mt : o mt`ct`īC[ ctīt˜ct˙it, yttFpt`t˜všÙtct, mt`t˜ǐt˙it št yttFpt`t˜všÙtct, S ut`Ùtj Ftītj cttF‘[tšj, ǐt`[t SC[ o mcttvt 9. št`. umt. Ft˜īt*tš : from extended surfaces. One dimensional unsteady stase heat conduction. Free and forces convective o ct`mšǐt“C[ 10. [t`. uÛt. īttj`vmt : mtvmt SC[ ǐtctmt‘
heat transfers Dimensional analysis. Heat exchanges. Radiation laws. Shape factors. Heat exchanges
n6. Go˛‘ mttt˜nl*t : Øtstct ØtMvt-Ftīt
between black and non-black surfaces. Network analysis. 3. Referigeration and Air conditioning. Yttit-⭲t 1. (⭲t) Go‘˛ Ytt<tt ctât t˜ātctâtmt : (st) Ftt˜§tctt` t˜nvot` stt“j Gmtctīt` GFt YttuttÙtW-Kt.[t` ytt`ǐtt`, yt,ptYttutt stt“j nt˜jÙttCtcttRı (yt) Got‘ Yttutt ctW Ftītjmtt`-stjytt`
Vapour compression, absorbtion, steam jet and air refrigeration system. properties of refrigerants, ltlct, (mt) Got‘ Yttutt mtvt˛ 1200 F‘. mt` 1700 F‘. ltctī (o) Got‘ Yttutt ctīt Go˛Ytct-t˜ctt˜Yt÷t t˜ctÛttjOttjtÙtWı
compressors. condensers. Expansion value and evaporators. Psychrometric processes. Comport n. (⭲t) octīvt ctW Go‘t mttt˜nlÙt ctīt t˜ctctītmt (yt) Got‘ MttÙtjt` ct`ī ot` ct:ǐttt˜mtctīt` mcttīǐt o`nǐtt` stt“j ǐtKtvtv (mt) Go‘t itet ctīt t˜ctctītmt-ittt˜ǐtyt ltctīı 3. (⭲t) stǐtt`it.{
zones. Cooling load calculations. All the year round air conddioning systems.
PART – B
sttvot`ǐtvt, ÚtÙttcttot` utct˛t˜òt, utitt˜ltMtt`ǐt sttvot``ǐtvt ltitt Fvtctīt Go‘t mttt˜nlÙt Ftj utYttctı (yt) mctlt˙$xXxx`òtj ctīt Got‘ mttt˜nlÙtı
Yttit-yt-1. Go˛‘ Mtt*tjt` ctât` Øtct¸Kt t˜ātOtt*tW- itptǐt, ctīmtt`ot, ctjmtt`Ùtt, ctmtvtctt`, ®yttF‘, ctīltt vtpct, stlt¸ctītvlt ctīt˜ctltt Sct˙ ct¸òtī Úvo ctīt˜ctlttı n. Go‘˛ itÅt
4. Internal Combustion Engines : SI and Cl engines. Four stroke and two stroke engines. Valve timing ctât` Øtct¸Kt t˜ātOtt*tW-otmlttvt, GFtvÙttmt ǐtIt¸ ctīitt, vttš˛Ùt mttt˜nlÙt, mttt˜nlÙt mtctt`#tt, ptt`ctvt Ûtt˜j$t, t˜vtytvOtı 3. mātlt˙ītltt ⭲ttvot``ītvt ctW Go‘˛ mttt˜nl*t ctât
diagrams. Combustion phenomena in Sl and Cl. engines. Detonation and knocking. Choice of engine fuels, *tt`itotvtı
Octane and cetane ratings. Combustion of fuels. Engines emission and controls Engine trial. 5. Turbonachines: Classification of turbonachines continuity. momentum and energy equation. Adiabatic
Go˛‘ mttt˜nl*t : t˜Éltt`*t ØtMvt-Ftīt
Fmt utMvt-Ft$t ctW cttǐt Ftt9 ctīt stOÙtÙtvt stFt`t˜#tlt nt`ittı FmtctW S`mt` utMvt FttÚ` pttÙtWit` t˜ptvtmt` Ftjt`#ttitt´ ctīt` sttǐtt`Ûtvttlctctī #tctltt ctīt stt˙ctīǐtvt t˜ctīÙtt ptt
and isentropic flow. Flow analysis in axial flow compressors and turbines. Flow analysis in centrifugal mtct`īı Yttit-⭲t (itÅt)-1. ctt`j ⭲tcctvt : yttitt` ytntj n. ittt˜ītyt : F˙lt`Kttyt-S-Kt¸lttlt` ittt˜ǐtyt, mtcFttoctī-Kttt˜ǐtctī stvpt¸ct 3. ntītt` : ct¸ctīctt-S-Mt`jt MttÙtjt` 4.
pumps and compressors. Demensional analysis and modeling. Performance of pumps, compressors ™mtātt: Gctjt-stt`-pttvt stot 5. Øt`ctÛtvõ: ut`ctÛtvõ ct`ī vt¸cttFvot stFtīmttvt`, mtcFttoctī-ctīctj jF‘mt 6. ⭲tyt¸īt ctâīttct ⭲ttūtto : it¸yttj-S-Kttt˜ltj 7. Fclt*ttūt
and turbines. 6. Power plants : Selection of site for steam, hydro, nuclear and gas power plants. Modern ⭲tītt` lttūt: stvttjctīǐtt` 8. ct¸âj‘lt¸ītu`vt nˆoj : sttt˜Ktj-S-Mtyt ct`ī nctmtFtīj
steam generators. Draft and dust removal equipments. Fuel and cooling water system. Thermodynamic Yttit-yt (FtÅt)- 9. ctt`j : F˙Kttyt-S-ctīǐttct-S-ctt`j, mtcFttoctī-styo¸ǐt nctī 10. mttˆot : ctīmttF‘o-S-mtt“ot (npttt˜jÙttlt mtt˜nlt) 11. ittt˜ītyt: t˜octtvt-S-ittt˜ǐtyt
analysis of steam power plants.
1n. Fctâyttīt: ct¸īt˜ǐǐtÙttlt-S-Fctīyttǐt (ct`īctǐt yttǐt-S-t˜ptyt,tFǐt) 13. ūtt`Mt ctītt`ntyttot`: mt“Ftī-stt`-mtytt 14. t˜Ftâjtctâ itt`jKtFt¸jt`: it¸ǐt-S-vtitctt 15. Ftˆâūt:
Governing of turbines : Thermodynamic analysis of gas turbines power plants. Non-conventional vt¸mKt-S-ctFtīt (ct`īctǐt vtct:Mt-S-Ftīt˜jÙttot`, omlt-S-mtytt, t˜ptvotvttctt) 16. ⭲tKltj-Gīt F‘cttvt: mtj-stt`-mttctt (ct`īctǐt lttjt`ctī mtÙÙttjt ct`ī ytto, t˜ytvlt-S-
power plants sloar thermal and wind generator. Economic power generation.
n4. t˜ātÅt¸lt ⭲tt˜Yt*tt˙t˜ītctât` (ELECTRICAL ENGINEERING) : PAPER - 1
ǐtcntlt)
n7 ⭲tjytt` mttt˜nl*t : (PAPER - 1)
(i) E.M. Theory. Analysis of Electrostatic and magetostatic fields. Lapaice Poisson & Xxxxxxx’x equation. 1. (a) Origin and development of the language in outline. (b) Significant features of the grammar of Electromagnatic wave and wave equations. Poynting’s Thorem. Waves on transmission fines. Wave the language and Rhetorich The following topics.
guides. Microwave resonators (ii) Networks & Systems, Systems and signals, Network Theorems
and their application. Transient and steady stase analysis of systems. Transform techniques and circuit
Background) and modern trends. Origin & Development of modern literary generous including
part network. Network parameters. Elements of network synthesis. Elementary active networks (iii)
analysis, Couppled circuits. Resonant circuits Balanced three phase circuits. Network functions. Two 2. Literary History and Literary Criticism : Literary movement. Socio-cultural influence (Classical
novel, short story, drama & essay.
Electrical & Electronic Measurement &Instrumentation : Basic methods of Measurement. Error anlysis, Electrical Standards. Measurment of voltage, Current, power energy, power factor, resistance,
inductance, capacitance, frequency and loss angles. Indicating instruments. DC and XX Xxxxxxx,
⭲tjytt` mttt˜nl*t (PAPER – II)
Electronic measuring instruments. Mulitimeter, digital voltmeter, frequency counter, Q-meter, oscilloscope This paper will require first-hand reading of the text prescribed and will be designed to test the Techniques special purpose CROs. Transducers and their classification. Temp Displacement, strain candidate critical ability.
pressure, velocity transducers, Thermmo-couple, thermistor, LVDT, strain gauges. piezo-electric crystal
SECTION A: Poets
etc, transduers. Applications of tranducers in the measurement of non-electrical quantities like pressure, 1. Imraul Qasis : His Mullaqah: (Complete) temperature, displacement, velocity. acceleration, flow-rate etc. Data-acquisition systems. (iv) Analog “Xxxx Xxxxx min Xxxxx Xxxxxxxx was Manzili” & Degital Electronics: semiconductors and semiconductor diodes & zener-diode/ Bi- polar junction 2. Xxxxxx bin xxxxx : His Mullaqah (complete) transistor and their parameters. Transistor biasing, analysis of all types of amplifiers including feedback “A min Ummi Aufa Diminatum xxx takallami”
and d.c. amplifiers. Operational amplifiers and their application, Analog computers. Feedback oscillators- 3. Al. Xxxxxx : The following two elegies from her Diwan
xxxxxxxx and Xxxxxxx types, waveform generators. Multivibrators. Boolean algebra. Logic gates. i) Ta’ xxxxxx Xxxx-xxxx (Complete) Combinational and sequential digital circuits. Semiconductor memories. A/D & D/A comverters. ii) Uzakkiruni (Complete)
Microprocessor. Number system and codes, elements of miceroprocessors & their important 4. Xxxxx xxx Xxxxxx : The following Qasaid from his Diwan: Qasida No. I to IV applications. (v) Electrical Machines : D.C. Machines; commutation and armature reaction,
characteristics and performance of motors and generators. Applications, starting and speed control.
Sychronous generators: Armature reaction, voltage regulation parallel operation. Single and threephase 5. Xxxx xxx Xxx Xxxxxxx : The following four Ghazals from his Diwan: inducticon motors. Principle of operation, performance characteristics, staring and speed control. (i) Fa jamma Tawaqafana (Complete)
Syanchronous Motors. Principle of operation performance analysis, Hunting. Synchronous condensera. (ii) Xxxxxx Xxxxxx (complete) Transformers : Construction phase of diagram, equivalent circuit, voltage regulation. Perfomance, Auto (iii) Xxxx Xxx Xxxx (complete) transformers, in instrument transformers. Three phases transformers. (V) Material Science: Theory (iv) Kitab (complete)
of Semiconductors. Conductors and insulators. Superconductivity. Various insulators used for Electrical 6. Al-Farazdaq : The following 4 Qasaid from his diwani
and Electronic applications. Different magneti materials, properties and applications. Hall effect.
t˜ātÅt¸lt ⭲tt˜Yt*tt˙t˜ītctât` (ELECTRICAL ENGINEERING) : PAPER - II (Section - A)
(i) In praise of Xxxx xxx Xxx xx-Xxxx (complete)
(ii) In praise of Xxxx xx-Xxxxxx Xxx xxx Xxxxx (complete)
1. Control Engineering : Mathematical Modelling of physical dynamic systems. Block diagram and single (iii) Wa Atlasa Assalin Wa Kana Sahiba (Complete) flow graph. Transfer function. Time response and frequency response of linear systems. Error evalution (iv) WA Kumin Tanamuha li Adhyal Ainan (Complete) Blode- Plot, Polar Plot and Xxxxxx’x chars, gain Margin and phase Margin Stability of linear feedback control 7. Xxx Xxxxxx : The following two from his Diwan: systems. Xxxxx-Xxxxxxx and Nayquist criteria. Route focus technique. Design of compensators. State- (i) Xxxxxxxx Xxx-xxxxx (complete)
variable methods in system modelling, analysis and design. Controllability and observability and their testing (ii) Al wa’z wa al Zubd (Complete)
methods. Polo placement design using state variables feedback. Control system components 8. Xxxxxx xx Xxxxxx : The following four Qasaid from his Diwan (Al-Shawqiat): (Potentiometers, Tachometers, Synchors & Servomotors) 2. Industrial Electronics : Various power (i) Masjid Aya Sufiyah (Vol. II) (complete)
semiconductor devices. Thyristor & its protection and series- parallel operation. Single phase and (ii) Ghaba Bulunia (vol.II) (Complete)
polyphase rectifiers. Smoothing filters, D.C. regulated power supplies. Controlled converters and (iii) Salamun Min Saba (Vol. II) (complete) inventors, choppers. Cyclo-converters A.C. voltage regulators. Application to variables speed, drives (iv) Al- Hamziah al- Nabawiyah (Vol.l) (complete)
induction and dielectric heating. Timers and welding circuits.
SECTION- B (HEAVY CURRENT)
SECTION B: Authors
1. Iban a Maqaffa : “Kalila wa Dimna” Chapter (Complete) (excluding Muqaddamah)
(3) Electrical Machines : 1. Fundamentals of electromechanical energy conversion. Analysis of “Al-Asad Wa Al-Thaur”
electromagnetic torque and induced voltages. The general torque equation. 2-3- Phase induction motors: 2. Ibu Xxxxxxxx : Xxxxxxxxx, 39 Pages, part Six from the fist chapter: From “Al fast xx-Xxxxx to Concept of revolving field. Induction motor as a transformer. Phase or diagram and equivalent circuit. wa min Faruihi aljabr-wa-al Muqabilah”.
Performance evaluation. Correlation of induction motor operation with basic torque relations. Torque- 3. Al-manfaluti : Al- Nazarat Vol 1 Egypt 1950
speed characteristics. Circle diagram starting and speed control methods. 3. Synchronuos Machines The following stories:
: Generation of e.m.f. Linear and non-liner and analysis. Equivalent circuit. Experimental determimation i) Al-sidq wa al-kizb
of leakage and synchronous reactances. Theory of salient pole machines. Power equation. Parallel ii) Xx-Xxxx wa allnsan
iii) Fi sabit Al-lhsan
Operation. Transient and subtransient reactences and time constants. Synchronous motor. Phasor
5. Xxxxxx xx-Xxxxx : Drama: “Xxxxx Xxx (complete)
4. Xxxxx Xxxx : Xxxxxx (Autobiography complete)
iv) Xx-xxxxx wa al-Xxxxx
diagram and equivalent circuit. Performance, V-curves. Power factor control, hunting. 4. Special machines : Tow phases a.c. servomotors. Equivalent circuit and performance stepper motors. Methods of operation, Drive amplifiers. Half stepping. Reluctance type steppor motor, Principles and working of universal motor. Single phase a.c. compersated series motor. Principle and working of charge motor.
(4) Electric Drives : Fundamentals of electric drive Rating estimation. Electric braking. Electromechanical
transients during staring and xxxxxxx & time and energy calculations. Load equalization. Solid State control
Section - C
Translation from Urdu to Arabic.
of d.c. three phase induction and synchronous motors. Applications of electric motors. (5) Electric Note : Candidates will be required to answer some questions carrying not less than 10 percent marks in Arabic also.
Continued....
n8. t˜nvot` mttt˜nl*t: Øtstct ØtMvt-Ftīt (Yttit-1) t˜nvot` Ytt<tt ltstt vttitjt`t˜ītt˜Ft ctât Ft˜ltntmt
1. Fttǐtt`, uttct˛īlt Sct˙ stFtYt˙,Mt ltitt Ft¸jtvtt` t˜nvot` ctīt mt˙t˜#tFlt stOÙtÙtvtı n. ctOÙt ctītǐt ctW yt,pt stt“j stctOtt` ctīt mttt˜nt˜lÙtctī Yttutt ct`ī ®Ft ctW t˜ctctītmtı 3. Kt.[t` ytt`ǐtt` itet Yttutt ctīt t˜ctctītmtı 4. jtptYttutt, mtcFtct‘ī Yttutt, jt°^Yttutt Sct˙ cttvtctī Yttutt ct`ī ®Ft ctW t˜nvot`ı 5. ct“zttt˜vtctī stt“j ltctīvtt`ctīt` #t`$t ctW t˜nvot` Yttutt ctīt` t˜mitt˜ltı 6. t˜nvot` Yttutt ctīt #t`$t stt“j stctOtt`, yt,pt, Kt.[t` ytt`ǐtt`, Ytt`ptFt¸jt`, ct¸īctt˙Gvtt` ctīt mttcttvÙt Ftt˜jÛtÙt 7. cttvtctī t˜nvot` ctīt cÙttctījt˜Ctctī mct®Ftı 8. vttitjt`t˜ǐtt˜Ft Go˛Ytct stt“x x˜ctctītmt, o`ctvttitjt`t˜ǐtt˜Ft ctīt` mtctmÙttÙtW stt“j mtcttOttvtı 9. t˜nvot` Mtyo-mtcFtotı
Yttit- n t˜nvot` mttt˜nl*t ctât Ft˜ltntmt
1. t˜nvot` mttt˜nlÙt ct`ī Ft˜ltntmt ǐt`Ktvt ctīt` FtjcFtjtı n. t˜nvot` mttt˜nlÙt ct`ī Ft˜ltntmt ctW ctītǐt t˜ctYttptvt ltitt vttctctījCtı 3. sttt˜octītǐt: Ytt˜òtīctītǐt, jt`t˜ltctītǐt, sttOt¸t˜vtctī ctītǐt ctīt` utct¸Kt utct˛t˜òtÙtt˙ı 4. sttOt¸t˜vtctī ctītǐt: Ft¸vt‘pttitjCt stt“j Yttjlt`vo¸ ctītǐt, t˜Éct`ot` Ùt¸it, ÚtÙttctto, utitt˜ltctto, utÙtt`itctto vtÙtt` ctīt˜ctltt Sct˙ Ftjctltt´ctītcÙt OttjtÙtW: (ctâ) t˜nvot` GFtv*ttmt, t˜nvot` ctântvtt`, t˜nvot` vttšctâ : Go˛Ytct t˜ctctītmt Sct˙ Fvtctīt` stOt¸vttltltvt utct˛t˜òtÙtt˙ı(Kt) t˜nvot` t˜vtytvOt ltitt stvÙt itet t˜ctOttÙtW: j`Kttt˜Ût$t, mtmctjCt,Ùtt$tt ct˛ltt˙vltı (it) t˜nvot` sttǐtt`Ûtvtt ctīt uttj˙Yt stt“x x˜ctctītmt: utct¸Kt sttǐtt`Ûtctī: jtctÛtvõ Mt¸ct:ǐt, vtvoo¸ǐttj` yttptFt`Ùtt`, npttjt` utmtto t˜Éct`ot`, vttit`võ, ct¸t˜òtīytt`Ot, jtctt˜ctǐttmt Mtctt‘, vttctctj t˜mt˙nı
t˜nvot` mttt˜nl*t : t˜Éltt`*t ØtMvt-Ftīt Yttit- Øtstct
Fmt utMvt-Ft$t ctW t˜vtOtt‘t˜jlt jÛtvttsttW ctW mt` cÙttKÙtt Sct˙ Gvt Ftj sttǐtt`Ûtvttlctctī utMvt FttÚ` pttÙtWit`ıctīytt`j «tvittctǐtt`, mtcFttoctī-MÙttct mt¸voj otmt, mttKtt` mt˙KÙtt 1 mt` 100 ltctī stt“j Fto mt˙KÙtt 1 mt` 20 ltctīı
mttjotmt (Yt,ctj itt`lt mttj) mtcFttoctī-jtctÛtvõ Mt¸ct:ǐt, uttjcYt mt` Sctī mtt“ Fto ltctī, lt¸ǐtmtt`otmt- jtctÛtt˜jlt cttvtmt Gòtjctītv[ı pttÙtmtt` (Ftocttctlt), mtcFttoctī- jtctÛtvõ Mt¸ct:ǐt (t˜mt˙nǐtot`Ft KtC[ stt“j vttitctltt` t˜ctÙtt`it KtC[) t˜ytntjt` mt˙«tn (uttjcYt mt` 100 ot`n` ltctī) t˜nvot` Ftt˜juto utctītMtvt, Fǐttntyttoı ptÙtMt˙ctīj utmtto: ctītcttÙtvtt`: (t˜Ûtvltt stt“j ßtæt mtit‘) mt¸t˜ct$ttvtvovt Ftvlt-vtt“ctīt t˜ctntj, Ftt˜jctlt‘vt, t˜vtjtǐtt-jtct ctīt` Mtt˜òtī Fttptt, stzt`Ùt-stmttOÙtctt`Ctt, ct¸t˜òtīytt`Ot-yt,Ütjt#tmt, vttittpt¸‘vt-yttoǐt ctīt` t˜Itjlt` o`Ktt n“, stctītǐt ct`ī yttoı
Yttit t˜Éltt`*t
Yttjlt`vo¸ nt˜jMÛtvõ-Yttjlt o¸o‘Mtt, ptÙtMt˙ctīj ‘utmtto’-mctīvo it¸Flt, jtctÛtvõ Mt¸ct:ǐt, t˜Ûtvlttctt˜Ct Yttit-Sctī (ctīt˜ctltt ct:Ùtt n“, ßtæt stt“j Ytt˜òtī)ı ut`ctÛtvõ- itt`otvt, ut`ctÛtvõ ctīt` mtct‘ßt`‰ ctīntt˜vtÙtt˙, mtcFttoctī stct˛ltjtÙt, ÙtMtFttǐt-t˜ocÙtt, FtīCtt`Mctj vttit ‘j`Ct¸’ ct“ǐtt sttBÛtǐtı
n9. Ftâtjmtt` mttt˜nl*t : Øtstct ØtMvt-Ftīt
Unit - 1-1. Short essay in Persian (Compulsory)
Unit - II - 2. (a) Origin and development of the language. (Old Persian, Pahlavi, Modern Persian). (b) Applied Grammar. (c) Rhetorics. (d) Prosody (Xxxx-i-Xxxxx Xxxxx, Xxxx-i-Motaqarib Mahzuf/Maqsur, Xxxx-i-Xxxxx Xxxxx). Asbab, Autad, Fawasil, Xxxxx-i-Qafia.
Unit - III - 3. Literary History, Criticism, Movements; Socio-cultural influences, Modern Trends. (a) Samanid Period: (Important Poets and Writers) (b) Ghazanavid Period : (Firdaus) Runi, Xxxxx Sad-i-Xxxxxx, Tarikh-i-Baihaqi). (c) Saljuquid Period : (Xxxxxx Xxxxx, Xxxxxxx, Xxxxx-i-Xxxxxx, Xxxxxx Xxxxxx, Siyasat Nama). (d) llkhanid Period : (Sa’di, Xxxx, ‘Xxxx’-ut- Tawarikh, Tarikh-i- Xxxxx Xxxxx). (e) Timurid Period : (Xxxxx, Xxxxxx Xxxxx, Khaju-i-Xxxxxxx, Xxxxx Nama-i-Xxxxxxxxxx Xxxxx, Tazkira-Xxxxxx Xxxx Xxxxxxxxxx, Xxxx) (f) Indo-Persian Literature : (Aufi, Khusrau, Xxxxx, Xxxx, Xxxxxx, Xxxx Xxxx, Tarikh-i-Xxxxx Xxxxx of Barani, Xxxxxx Xxxxxx of Brahman, Xxxxxx, xxxxx). (g) Safavid to Modern Period : (Xxxxxxxxx Xxxxx, Qaani, Xxxxx-xxxxxx’xxx Xxxxx, Xxxxxxxxx, Xxxxxx-i-X’xxxxxx, Xxxxx Xxxxxxxxx’ Xxxxx- i-Xxxxxxx, Xxxxxxxxx, Hejazi,Sabk- i - Khurasani, Sabk-i-Eraqi, Sabk-i-Hindi, lslamic Revolution of lran).
Unit - IV - 4 Translation of ten out of fifteen simple sentences of Undu into Persian (Compulsory).
Ftâtjmtt` mttt˜nl*t - t˜Éltt`*t ØtMvt-Ftīt
The paper will require first hand reading of the texts prescribed and will be designed to test the candidates critical ability.
Unit - I - Prose - 1. Translation from the following texts : (a) Xxxxxx Xxxxx Xxxxxxxxxx, Xxxxxx Xxxxxx (Xxxxxx and Sha’iri). (b) i-i Shirazi Gulistan (Der Sirat-i-Padshahan and Dar Akhlaq-i- Derwishan)
(c) Xxxxxxxx Xxxxxx, Tarikh-i- Xxxxx Xxxxx (Wasaya- i- Xxxxxx Xxxxxx be Xxxxxxx-o-Wali Ahd- i- Khud).
(d) Sadiq -i- Hidayat Dash Xxxx, Talab-i-Amorzish, Girdab).
Unit - II - 2. Critical and biographical questions about the prescribed authors and their works (4 questions).
Unit - III - Poetry - 3. Explanation from the following texts : (a) Firdausi. Xxxxxxx (Dastan- i- Rustam- o- Sohrab and Dastan - i - Bizan- o - Maniza). (b) Umar- i- Xxxxxxx. Ruba’ yat (Xxxxx Xxxx) (c) Xxxxxxx Xxx, Mathnavi (Hikayat-i-Xxxxxx- x- Xxxx, Hikayat-Hekayat - i - Hazrat Umar-- o- Qasid - i- Rum and Hikayat-i-Baqqalo-Tuti). (d). Xxxx Xxxxxxx. Ghaziliyat (Xxxxx Xxxx). (e) Hafiz-i-Shirazi. Ghaziliyat (Xxxxx Xxxx). (f) Xxxx-i- Xxxxxxx. Qasidas( Dar tausif - i - Kashmir and Madh-i-Xxxxxxxx Xxxxx).
(g) Bahar- a - Mashhadi Diwan-i-Bahar (Jughd-i-Jang, Shabahang, Damawandiya, Wataniya).
Unit - iv - 4 . Critical and Biographical questions regarding the poets and their work prescribed (4 questions)
Unit - v - 5 Translation of an unseen Passage from English into Persian.
30. mt˙mct˛âlt mttt˜nl*t : Øtstct ØtMvt-Ftīt
KtC[-ctâ-Ytt<tt t˜āt%ttvt - Yttutt ctīt Go˛Ytct stt“x x˜ctctītmt, YttuttsttW ctīt ctitt´ctījCt, Yttjltt`Ùt Sct˙ ctOÙtctītǐtt`vt Yttjltt`Ùt sttÙt‘YttuttS˙ stit‘Ftt˜jctlt‘vt ctīt` t˜oMttS˙ ltitt ctītjCt, Octt˜vtt˜vtÙtct, Octt˜vtFtt˜jctlt‘vt ct`ī ctītjCt, mt˙mct˛īlt Octt˜vtÙttW ct`ī t˜ctMt`ut mtvoYt‘ ctW cttvtctt`Ùt cttiÙtv$t Sct˙ ǐtt“t˜ctīctī mt˙mct˛īlt ctīt` lt¸ǐtvttı KtC[ - Kt - mt˙mct˛âlt ā*ttFtctâCt - mtt˜vOt-mtcttmt, ct˛īovlt, ltt˜ælt Sct˙ ctītjctī (ǐtIt¸ t˜mtætvlt ctīt“ct¸ot` mt`) KtC[- it-Yttjltt`*t oMt‘vt - t˜vtcvtt˜ǐtt˜Ktlt Ftt9Ùt«tvittW ct`ī sttOttj Ftj Yttjltt`Ùt oMt‘vt ctīt mttcttvÙt stOÙtÙtvt: ltct‘īYttutt (ct`īMtct t˜ctßt), stvt¸cttvtFtÙt‘vlt, mtt˙KÙtctītt˜jctīt F‘Mctjct˛īuCt, mtotvtvo ct`otvltmttj (mtotvtvo), ctī9t`Ftt˜vtuto-utitct stOÙttÙt t˜Éltt`Ùtt ctǐǐtt` ctt$tı ßtt`ctÆtitctitt`ltt-t˜Éltt`Ùt stOÙttÙt ctt$tı KtC[-‹t-ctâtā*tMttŒt - (ctâ) sttvtvoctOt‘vt ct˛īlt OctvÙttǐtt`ctī utitct Gett`lt ct`ī sttOttj Ftj Octt˜vt stt“j Gmtct`ī Yt`otW ctīt mttcttvÙt stOÙtÙtvt (Kt) ctcctš ct`ī ctītcÙtutctītMt mt` t˜vtcvtt˜ǐtt˜Ktlt t˜ctutÙt: ctītcÙtutÙtt`ptvt, ctītcÙtǐt#tCt, ctītcÙtYt`o, MtyoMtt˜òtī, jmt, it¸Ct ltitt stvt¸uttmt Mǐt`ut, GFtctt,
®Ftctī, Glut`#tt, stFtnvt¸t˜lt, cÙt`t˜ltj`ctī, xxxxx‘vltjvÙttmt, t˜ctYttctvtt, t˜ctMt`ut`t˜òtī, mctYttctctt`t˜òtī, mtcttmtt`t˜òtī, ot`Ftctī, ctītcÙtt˜ǐt˙it, Sct˙ Ftt˜jmt˙KÙtt stǐt˙ctītjı KtC[-[ - mt˙mct˛âlt ctW t˜vtytvOt - mt˙mct˛īlt ctW t˜vtytvOt (250 MtyotW mt` ctīct ctīt vtntR nt`vtt Ûttt˜nÙt`)
mt˙mct˛âlt mttt˜nl*t : t˜Éltt`*t ØtMvt-Ftīt
KtC[ - ctâ - itÅt uāt˙ FtÅt - t˜vtcvtt˜ītt˜Ktlt Ftt9*t ntvsttW ctât ⭲tO*t*tvt :1. ctītocytjt`-Mt¸ctīvttmtt`Fto`Mt ctt$t n. t˜Mtctjtptt˜ctptÙtct-utitct t˜vt:Mcttmt ctt$t, 3. vtǐtÛtcFtt utitct GÛÚcttmt, sttÙtt‘ctlt‘ctCt‘vt (28 Mǐtt`ctīFtÙt‘vlt) 4. ct`Itotlt-(Fttct‘ct`It) 5. t˜ctījtltpt‘¸vtt`Ùtct (utitct mtit‘), 6. vtt`t˜ltMtltctīct˛ Ûtt“Ktcytt (mt˙mctījCt Ftet 1 mt` 30 ltctī)ı 25 st˙ctītW ct`ī Sctī utMvt ctīt Gòtj mt˙mct˛īlt ctW t˜ǐtKtvtt nt`ittı KtC[ - Kt - mt˙mct˛âlt vttš˛*t mttt˜nl*t- t˜vtcvtt˜ītt˜Ktlt jÛtvtt⭲ttW ctât` Ftt9˛*tmttctntt` ctât ⭲tO*t*tvt: 1. stt˜YtzttvtMttct¸īvltǐtct (Ûtlt¸it‘ st˙ctī) n. GòtjjtctÛtt˜jltct˛ (lt˛ltt`Ùt st˙ctī), 3. utt˜ltcttvttšctīct (utitct st˙ctī), 4. ct˛ÛÚctīt˜šctīct (utitct st˙ctī) KtC[ - it - Fttt˜jYttt˜<tctâ Fto - mt˙mct˛âlt ct`â t˜vtcvtt˜ītt˜Ktlt Fttt˜jYttt˜<tctâ MtyotW ctât %ttvt : ctntctītcÙt, KtC[ctītcÙt, ctīitt, sttKÙttt˜Ùtctīt, ÛtcFtt, utmlttctvtt, t˜ctuctīcYtctī, utct`Mtctī, mtt$tOttj, ctmlt¸Yt`o, vttÙtctī Yt`o, t˜ctotutctī, Ftt`9cto‘, t˜ctš Ût`š, Fttlttctītmittvtctī, stit‘utct˛īt˜lt, ctītÙtt‘ctmitt, Ft˙Ûtmtt˜vOt, t˜vtÙtlt ßttcÙt, mctitlt, ptvttt˜vltctī, sttctītMtYttt˜utlt, ®FtctīYt`o, vt`FtiÙt, ut`#ttit˛n, ctòtcttjCtt`ı KtC[ - ‹t - mt˙mct˛âlt mttt˜nl*t ctât Ft˜ltntmt - t˜vtcvtt˜ǐtt˜Ktlt mttt˜nt˜lÙtctī t˜ctOttsttW ctīt Go˛Ytct, t˜ctctītmt stt“j Gvtctīt` t˜ctMt`utlttS˙: sttut‘ctntctītcÙt, ctntctītcÙt (S`t˜ltntt˜mtctī ctntctītcÙt mtt˜nlt) itet, vttšctī, ÛtcFtt Sct˙ itt`t˜ltctītcÙtı t˜šFFtCtt`: Fmt KtC[ ctW 25 st˙ctīt` ctīt Sctī utMvt t˜ctt˜Mt° jÛtvtt/jÛtvttctītj ct`ī t˜ctutÙt ctW t˜šFFtCtt` ct`ī ®Ft ctW ut°cÙt nt`ittı KtC[-[-t˜nvot` mt` mt˙mct˛īlt ctW stvt¸ctto
31. āttt˜Ctū*t ltstt īt`Ktt˙ctâvt : Øtstct ØtMvt-Ftīt
īt`Ktt˙ctâvt ltstt t˜ātòt Yttit 1. īt`Ktt˙ctâvt, ⭲t˙ct`â#tCt ltstt ctâjtjt`FtCt
t˜ctòtt`Ùt mttÛtvtt utCttǐtt` ct`ī ®Ft ctW ǐt`Ktt˙ctīvt-cÙtctntt˜jctī t˜ctzttvttW ctīt utYttctı Ftt˜jctlt‘vtMtt`ǐt cttǐÙt ct`ī mltjtW ct`ī ǐt`Ktt˙ctīvt ctīt` t˜ctt˜OtÙtt˙ı Ûttǐtt ›tīÙt Mtt˜òtī Sct˙ Ûttǐtt ǐttitlt ǐt`Ktt˙ctīvtı ctīcFtvtt` ǐt`KttW ctīt` GÛÛt mltjt`Ùt mtctmÙttÙtW, ctīcFtt˜vtÙttW ctīt Sctīt`ctījCt, mt˙t˜ctǐtÙtvt ltitt Ft¸vtt˜vtctt‘Ctı mtt$tOttjt` ctīcFtt˜vtÙttW ctīt ǐt`Ktt˙ctīvtı st˙MttW stt“j KÙttt˜lt ctīt cttǐÙtt˙ctīvtı t˜vtÙt˙$tctī ct`ī ctītÙt‘ mtcFtt˜òt t˜vtÙt˙$tCt, ct“Ottt˜vtctī ltitt utyt˙Otctīt`Ùt t˜vtÙt˙$tCtı sttÙtctīj stt˜Xxx˜vtÙtct 1961 ct`ī ctnlctFttCt‘ uttctOttvt-Ftt˜jYttuttÙtW, t˜vtcttmt Sct˙ ctījott˜Ùtlct sttÙtctīj utYttj ÚtšW, Ütmt Itšt“ltt`ı t˜ctt˜Yt÷t Mtt`ut‘ctītW ct`ī stvltit‘lt sttÙt t˜vtOtt‘jCt mt` mtcytt˜vOtlt mtjǐt utMvt, cÙtt˜° ltitt mttPt`otjt` mt˙mittsttW ctīt` ctījÙtt`iÙt sttÙt ctīt t˜vtOtt‘jCtı sttÙtctīj Ftott˜Otctītjt`ı ǐttitlt ǐt`Ktt˙ctīvt ctīt` utct˛īt˜lt stt“j ctītÙt‘, ǐttitlt ctīt ctitt´ctījCt,stOt‘Ftt˜jctlt‘vtMtt`ǐt ǐttitlttW ctīt` t˜mitlt ct Ftt˜jctlt‘vtt`Ùt stctÙtcttW ctW Ft˛itctīctījCt ctīt` ltctīvtt`ct`īı ctītÙt‘ ǐttitlt ǐt`Ktt˙ctīvtı mttct«tt` t˜vtit‘ctvt ct`ī cttǐÙtt˙ctīvt ctīt` t˜ctt˜OtÙtt˙ı ǐttitlt ltitt t˜ctòtt`Ùt ǐt`KttW ctīt t˜ctǐttvtı mtt`ctt˙lt ǐttitltı ǐttitlt-ctt$t- ǐttYt mt˙yt˙Ot ytt`ptitt˜Ctltt`Ùt mtt$t ltitt j`Kttt˜Ût$tt`Ct utoMt‘vt, ctītctyt˙ot` t˜ytvo¸ ǐttitlt t˜vtÙt˙$tCt ltitt ǐttitlt Itšt“ltt` ctīt` ltctīvtt`ctWīı ytptšt`Ùt t˜vtÙt˙$tCt, ǐtt`ÛtMtt`ǐt ytptš, cttvtctī ǐttitlt ltitt stvltj t˜ctMǐt`utCtıGòtjott˜Ùtlct ǐt`Ktt˙ctīvtı GFtt˜jcÙtÙttW ctīt` utYttt˜jlt ctījvt` ct`ī sttOttj stt“j GvtctW stvltt˜vt‘t˜nlt Yt,t˙t˜vlt cttǐÙt t˜vtOtt‘jCt ct`ī t˜ǐtS ǐttitlt ǐt`Ktt˙ctīvtı
mtt#Ùtt˙ctīvt ctītÙt‘ ctīt ctnlct- st˙ct`ī#tCt ctītÙt‘ ctīt utt`«ttct, Ftt˜jmtcFtt˜òtÙttW-t˜mitj, #tÙtMtt`ǐt ltitt Ûttǐt¸ctīt cttǐÙtt˙ctīvt ltitt mtlÙttFtvt, xxx˜ÙtlcttW ctīt mtlÙttFtvt, mtt`t˜ctlt xxx˜Ùtlct ctīcFtt˜vtÙttW ctīt st˙ct`ī#tCt, st˙ct`ī#tCt ctīt` t˜vtÙt¸t˜òtī, t˜mitt˜lt, stt˜Otctītj ctīòt‘cÙt ct xxx˜Ùtlctı st˙ct`ī#tCt ctīt utt˜ltct`ovtı st˙MtFtt˙ptt` ctīt st˙ct`ī#tCt ltitt st˙Mtt` ctīt nmlttvltjCtı ytQctīt` ltitt ytt`ctt ctīcFtt˜vtÙttW ct`ī st˙ct`ī#tCt mtcytvOtt` t˜ctMt`ut t˜ytvo¸ı
Yttit - n ā*tātmttt˜*tctâ t˜ātòt ltstt t˜ātòtt`*t mt˙mstt*tW
t˜ctòtt`Ùt utyt˙Ot ctīt` stctOttjCtt Sct˙ #t`$t-t˜vtitcttW ctīt t˜ctòtt`Ùt ǐt#Ùt, Ft˙tptt` ytptšvt ctītctÛtǐttv ltitt stFtntt˜jlt jt`ctī.[ utcttn GFttitct-t˜ctt˜vtÙtt`it t˜vtCt‘ÙttW ctW stt˜vtt˜§tltltt ctīt mtcttct`Mt-stvt¸cttīǐtltct Ft˙tptt` {t˙Ût` ctīt ®Ftt˙ctīvt-Ftt˙ptt` ctīt` Yttj˙t˜ctīlt stt“mtlt ǐttitlt ltitt ctt`t˜ot˜itǐtÙttvtt` ct t˜ctǐtj ctt˘[ǐt mtcytvOtt` t˜ctcttoı stǐFtctītt˜ǐtctī, ctOÙtctītt˜ǐtctī ltitt ot`It‘ctītt˜ǐtctī t˜ctòt uttt˜Flt ct`ī œtt`lt, mttct‘ptt˜vtctī t˜vt#t`Ft ltitt Ftt˜jctlt‘vtt`Ùt $tīCtFt$ttW ctīt` Yttt˜ctctīt,
$tīCt-mtctltt stvt¸Fttlt mtcyt˙Xxx` xxx˜ltcttvt ltitt t˜oMtt t˜vtoˇMt-stvt¸cttīǐtltct ǐttYtt˙Mt vtt`t˜lt ct`ī t˜vtOtt‘jctī ltlct, pt`cmt F‘. cttǐšj ltitt ptt˘vt t˜ǐtvšvtj ct`ī stvt¸cttīǐtctītjctī ctt[ǐmt, ǐttYtt˙Mt Yt¸itlttvt ct`ī ®Ftı ctītÙt‘Mtt`ǐt Fttptt` ctīt` mt˙jÛtvtt ltitt Gmtct`ī st˙itt` ct`ī stvltj ct`ī mltj ctīt` utYttt˜ctlt ctījvt` cttǐt` Ûtǐtltlctı ctītÙt‘Mtt`ǐt Ft˙tptt` sttctMÙtctīlttsttW ct`ī Fttctt‘vt¸cttvt ctīt` jt`ctī.[-utcttn GFttitct, Yttjltt`Ùt Gett`ittW ctW ctītÙt‘Mtt`ǐt Ft˙tptt` ctīt` ®Ftj`Ktt-mttKt utyt˙Ot stt“j mttKt vtt`t˜lt, t˜ctòtt`Ùt t˜vtÙtt`ptvt ltitt jt`ctī.[ utcttn t˜ctltjCttW mt` mtcyt˙t˜Otlt ctīj-t˜ctÛttjı
Yttjltt`Ùt ct¸õt yttpttj ctīt mt˙it9vt Sct˙ o¸yt‘ǐtlttsttW-cttt˜Ctt˜pÙtctī ytQctīt` ctīt` Ftjt˜mtcFtt˜òtÙttW stt“j o`ÙtlttsttW ctīt` mt˙jÛtvtt jt°^t`ÙtctījCt ctīt` GFtǐtt˜yOtÙtt˙ stt“j stmtFtīǐtlttS˙, #t`$tt`Ùt «ttctt`Ct ytQctī, ytQctī mttKt ct`ī stvt¸itctvt Ftj ßtt` Ftt`. Sǐt. šC[vt mš[t` «t¸Ft 1976 ctīt` mt˙mlt¸t˜ltÙttW stt“j Ûtt`j` ctīct`št`, 1979 Étjt Gvtctīt mt˙Mtt`Otvtı Yttjltt`Ùt t˜jptct‘ ytQctī ctīt` ctt`t˜õctī Sct˙ mttKt vtt`t˜ltÙttW ctīt cttǐÙtt˙ctīvtı Yttjltt`Ùt Ft˙tptt` yttpttj ct`ī Itšctī, stt˜Ktǐt Yttjltt`Ùt ot`It‘ctītt˜ǐtctī t˜ctòtt`Ùt mt˙mittsttW (sttF‘. [t`. ytt.` sttF.‘) sttF‘. S.Ftī mtt`. sttF‘., sttF‘. mtt`. sttF‘. mtt`. sttF‘. ltitt sttj. ytt.` sttF.‘ ct`ī ctītÙt‘ ltitt ctītÙt‘utCttt˜ǐtÙtt˙ Yttjltt`Ùt ptt`ctvt ytt`ctt t˜vtitct ltitt Yttjltt`Ùt Ùttt˜vtš š^mš ctīt` t˜ctt˜vtÙtt`it vtt`t˜ltÙtt˙ı mct˙īOt t˜ctFtt˜CtÙttW ctīt` ctlt‘cttvt t˜mitt˜lt ltitt Gvtctīt t˜vtÙtctvtı
Yt¸itlttvt ct mt˙«tnctīltt‘ ytQctīt` ctīt` ct“Ottt˜vtctī mt¸j#tt ct`ī t˜ctMt`ut mt˙oYt‘ ctW j`Ktt˙ctīvt ct Ft˛‰t˙ctīvt mtcyt˙Xxx` Ftj›tītcÙt t˜ctǐt`Kt stt˜Xxx˜vtÙtct, 1881 ct`ī uttctOttvt, ytQctīt` ct`ī stt˜Otctītj (Ûttš‘ t˜j˙it) FtÙt‘ct`#tCt ltitt t˜vtÙtctvt mtcyt˙Xxx` yt“t˜ct˙īit t˜vtÙtctvt stt˜Xxx˜vtÙtct, 1949 ct`ī utct¸Kt uttctOttvtı
āttt˜Ctū*t ltstt īt`Ktt˙ctâvt : t˜Éltt`*t ØtMvt - Ftīt - mt˙it9vt t˜mtætvlt uāt˙ ⭲ttˆÅtt`t˜itctâ mtcyt˙Ot Yttit - 1 mt˙it9vt t˜mtætvlt mt˙it9vt ctīt` utct˛īt˜lt ltitt stctOttjCttı mt˙it9vt ct`ī ǐt#Ùt: uttitt˜ctctī ltitt t˜Éltt`Ùt ǐt#Ùt, Sctīǐt ltitt ytn¸ǐt ǐt#Ùt, ǐt#Ùt-mttOtvt ßt˙˛Ktǐttı ǐt#ÙttW ctīt t˜ctmittFtvt, stvt¸›tīctCt, t˜ctmlttjCt, ltitt ytn¸ctījCtı ⭲ttˆFtÛttt˜jctâ mt˙it9vt : utctītj, mt˙jÛtvtt-ǐttFvt ltitt mšt˘Ftī, t˜›tīÙttlctctī, ct“t˜š^ct:mt ltitt
stFtīmtj Mttnt`-utct˛īt˜lt ltitt Mtt˜òtī ctīt sttOttj, Mtt˜òtī ct`ī ßtt`lt, Mtt˜òtī mt˙jÛtvtt ltitt jtptvtt`t˜ltı ctvtt`ytǐt ltitt GlFttoctīlttı vt`lt˛lāt : t˜mtætvlt Sct˙ Mt“t˜ǐtÙtt˙ mt˙it9vttW ctW mt˙ItuttX ctīt utytvOt,mtcFttovt t˜ctMǐt`utCt,mt˙it9vttW ct`ī t˜ǐtS mt˙mct˛īt˜lt ctīt ctnlctı t˜ctct`ctīMtt`ǐtltt ctīt` mtt`cttÙtWı mt˙it9vttlctctī Ftt˜jctlt‘vt, stvt¸cttīǐtvt, ct˛t˜æ Sct˙ t˜ctctītmt mt˙it9vtt`Ùt t˜vtÙt˙$tCt ltitt utYttctt`ctījCt, mt˙it9vttW ctīt ǐtt`ctī Gòtjott˜Ùtlctı
Yttit - n (⭲ttˆÅtt`t˜itctâ mtcyt˙Ot)
Yttjlt ctW stt“ett`t˜itctī ßtct ltitt Gmtctīt` ctÛtvtytæltt, Yttjltt`Ùt Gett`ittW ctW ßtt˜ctctī stvt¸Ftt˜mitt˜lt ltitt ßtct sttctlt‘, stt“ett`t˜itctī mtcyt˙OttW ctīt` utct˛īt˜lt Sct˙ t˜mitt˜lt, ßtt˜ctctī-t˜Mt#tt, utyt˙Ot ctW ßtt˜ctctītW ctīt` mtnYttt˜itltt oMt‘vt, lttt˜ct‘īctīltt, ctlt‘cttvt stctmitt ltitt Yttctt` mtcYttctvttÙtWı ǐtt`ctī-GFt›tīcttW ctW stt“ett`t˜itctī mtcytvOtı
mt˙it9vt ctW mt`t˜ctctitt´Ùt t˜ctYttit ctīt` Yttt˜ctctīt, utMttmtctīt`Ùt t˜ctctītmt, mt`t˜ctctitt´Ùt vtt`t˜ltÙtt˙, mt`t˜ctctitt´Ùt st˙ct`ī#tCt ltitt mt`t˜ctctitt´Ùt Mtt`Otı
ctptotjt` ltitt ctptotjt` ctW stmtcttvtlttÙtW, Yttjlt ctW ctptotjt`-vtt`t˜ltÙtt˙, Yttjlt ctW ctptotjt` utMttmtvt mt` mtcytt˜vOtlt t˜ctt˜Otctī GFttÙt, Yttjltt`Ùt Gett`it ltitt ct˛īt˜ut ctW ctptotjt`ı mt˙‹tātto ct`â t˜mtætvlt - Yttjlt ctW ßtct mt˙It sttvot`ǐtvt t˜ctctītmt ltitt mt˙jÛtvtt, cttn˛Ùt vt`lt˛lct ctīt` Yttt˜ctctītı mttcttt˜nctī mtt“otctītjt`: stctOttjCttÙtW, t˜mitt˜lt, mtt`cttÙtW ltitt Yttjlt ctW Fmtctīt` utYttctMtt`ǐtlttı stvltt‘°^t`Ùt ßtct mt˙it9vt ltitt Yttjlt, Yttjlt ctW stt“ett`t˜itctī t˜ctcttotW ctīt t˜vtcttjCt ltitt Ftt˜jMtt`Otvt-lt˙$t t˜vtcttjctī GFttÙt ltitt cÙtctntj ctW stvÙt GFttÙtı
3n ītt`ctâ ØtMttmtvt: ØtMvt Ftīt-1 (ØtMttmtt˜vtctâ t˜mtætvlt)
1. cttǐt stctOttjCtt ǐtt`ctī utMttmtvt ctīt stit‘, #t`$t t˜ctmlttj Sct˙ ctnlct, ǐtt`ctī utMttmtvt ctīt Sctī Mttvt ct`ī ®Ft ctW ›tīct-t˜ctctītmt, t˜vtptt` stt“j ǐtt`ctī utMttmtvt, ctīǐtt Sct˙ t˜ctzttvt ct`ī ®Ft ctW ǐtt`ctī utMttmtvt, t˜ctctīt˜mtlt Sct˙ t˜ctctītmtMtt`ǐt mtcttpttW ctW Fmtctīt` Yttt˜ctctīt, utMttmtvt ctīt` Ftt˜jt˜mitt˜ltctīt`- mttcttt˜ptctī, jtptvtt`t˜ltctī, sttt˜it‘ctī Sct˙ mtt˙mct˛īt˜ltctī, vtctt`vt ǐtt`ctī utMttmtvtı n. mt˙it9vt ct`â t˜mtætvlt : ct“zttt˜vtctī utytvOtvt, (š`ǐtj Sct˙ Gvtct`ī mtnÙtt`itt`), stt˜Otctītjt` lt˙$t ctīt t˜mtætvlt (ct“ct:mt ct`ytj), Mttvtt`Ùt t˜mtætvlt (n`vtjt` FtīÙtt`ǐt, ǐttitj it¸t˜ǐtctī ltitt stvÙt), cttvtct mtcyt˙Ot t˜mtætvlt (Sǐšct ct`Ùtt` stt“j Gvtct`ī mttitt`), cÙtctmitt Ât˜°ctīt`Ct (Ût`mšj ytjvtt[‘)ı 3. mt˙it9vt ct`â t˜vt*tct : Fto mtt`Fttvt, stto`Mt ctīt` Sctīltt, mtòtt, stt˜Otctītj Sct˙ Gòtjott˜Ùtlct, mtctvctÙt, t˜vtÙtv$tCt ctīt t˜ctmlttj, FtÙt‘ct`#tCt,ct`īvõt`ÙtctījCt Sct˙ t˜ctct`īvõt`ctījCt, utlÙttÙtt`ptvtı 4. ØtMttmtt˜vtctâ ā*tātntj : njytš‘ mttFctvt ct`ī Ùtt`itotvt ct`ī t˜ctMt`ut mtvoYt‘ ctW t˜vtCt‘Ùt ǐt`vtt, mtcut`utCt, ctvtt`ytǐt, stt˜Ytut`jCt (ct`mǐtt` Sct˙ npt‘ytit‘) stt“j vt`lt˛lct ct`ī t˜mtætvltı 5. mt˙it9vt mt˙jÛtvtt : ct¸KÙt ctītÙt‘ctītjt` Sct˙ Gvtct`ī ctītÙt‘, mtt$t ct˙$tCtt Sct˙ mtntÙtctī stt˜YtctījCt, t˜ctYttit, t˜vtÙtct, ctīcFtvtt` ytt`[‘ Sct˙ sttÙtt`it, ct¸KÙttǐtÙt Sct˙ #t`$tt`Ùt mtcytvOtı 6. ctâtt˜ct‘ctâ ØtMttmtvt : vtt“ctījMttnt` ltitt ǐtt`ctīmt`ctt, ctitt´ctījCt, Ytltt´ utt˜Mt#tCt, ct˛t˜òt t˜ctctītmt, t˜vtuFttovt cttǐÙtt˙ctīvt, Ftot`÷tt˜lt, ct`ltvt mt˙jÛtvtt, mt`ctt Mtltˇ, mtlÙtt˜vt‰ Sct˙ stvt¸Mttmtvt, t˜vtÙtt`òtīt- ctīct‘Ûttjt` mtcytvOt, mt`ctt t˜vtct˛t˜òt ǐttYt, mttcttvÙtzt Sct˙ t˜ctMt`utzt ltšmitltt Sct˙ stvttctlttı 7. t˜ātòtt`*t ØtMttmtvt : ytptš ctīt` mt˙ctīǐFtvtt, ytptš lt“Ùttj ctījvtt ltitt Gmtctīt ctītÙtt‘vctÙtvt, t˜vtuFttovt ytptš ytvttvtt, t˜ctOttÙtt` t˜vtÙt˙$tCt, ǐt`Ktt Sct˙ ǐt`Ktt Ftjt`#tCtı 8. Gòtjott˜*tlāt ltstt t˜vt*t˙ītCt : Gòtjott˜Ùtlct Sct˙ t˜vtÙt˙$tCt ctīt` mt˙ctīǐFtvttS˙, utMttmtvt Ftj t˜ctOttÙtt`, ctītÙt‘ctītjt` ltitt vÙttt˜Ùtctī t˜vtÙt˙$tCt, utMttmtvt Ftj vttitt˜jctītW ctīt t˜vtÙt˙$tCtı 9. ØtMttmtt˜vtctâ t˜ātt˜Ot : utMttmtt˜vtctī mt¸Ottj ctīt` mt˙ctīǐFtvtt Sct˙ utt˜›tīÙttÙtW, stt` ltitt Sct, ctītÙt‘ stOÙtÙtvt stt“j Gmtctīt` ltctīvtt`ctī, mtctmÙttÙtW Sct˙ mtcYttctvttÙtWı 10. ØtMttmtt˜vtctâ mt¸Ottj : utMttmtt˜vtctī t˜ctt˜Ot ctīt` stctOttjCtt Sct˙ ctnlct: utlÙttÙtt`ptvt: stit‘ utytvOtvt ǐttYt, mtt`cttÙtW Sct˙ mt¸j#tt, GFttÙt, utMttmtt˜vtctī stt˜OtctījCtı 11. lt¸ītvttlctctâ uāt˙ t˜ātctâtmt ØtMttmtvt : lt¸ǐtvttlctctī ǐtt`ctī utMttmtvt ctīt stit‘, utct˛īt˜lt Sct˙ #t`$t t˜ctmlttj t˜utptct“t˜šctī-mttǐtt utt˜lt®Ft ct`ī t˜ctMt`ut mtvoYt‘ ctW ut`īv[ t˜jimt ctīt Ùtt`itotvt, t˜ctctītmt utMttmtvt ctīt` stctOttjCtt, #t`$t t˜ctmlttj ltitt Fmtctīt ctnlct, t˜ctctītmt utMttmtvt ctīt jtptvtt`t˜ltctī, sttt˜it‘ctī Sct˙ mttcttt˜ptctī-mtt˙mct˛īt˜ltctī mtvoYt‘, utMttmtt˜vtctī t˜ctctītmt ctīt` mt˙ctīǐFtvttı 1n. ītt`ctâ vtt`t˜lt : ǐtt`ctī utMttmtvt ctW vtt`t˜lt Sct˙ vtt`t˜lt t˜vtOtt‘jCt ctīt` mt˙ctīǐFtvtt Sct˙ Gmtctīt ctnlct t˜vtOtt‘jCt Sct˙ ctītÙtt‘vctÙtvt ctīt` utt˜›tīÙttÙtWı
ītt`ctâ ØtMttmtvt : ØtMvt-Ftīt - n Yttjltt`*t ØtMttmtvt
1. Yttjltt`*t ØtMttmtvt ctât ›tâct t˜ātctâtmt : ctīt“t˜šǐÙt ct`ī t˜ctÛttj, ct¸itǐt Sct˙ t˜yt,t˜šMt Ùt¸it ct`ī utct¸Kt Ùt¸it utctlt‘ctī t˜Ûtvnı n. mt˙ātˆOttt˜vtctâ Ftt˜jāt`Mt
: mt˙mtot`Ùt ǐtt`ctīlt˙$t, mt˙Itctto, Ùtt`ptvtt, mtcttptcttoı 3. mt˙‹t mltj Ftj jtūtvtt`t˜ltctâ ctât*t‘Fttt˜ītctât : jt°^Ftt˜lt, utOttvtct˙$tt`, ct˙t˜$tFtt˜juto, ct˙t˜$tctC[ǐt mtt˜ctt˜ltÙtt˙ı 4. ct`âvõt`*t ØtMttmtvt ctât` mt˙jÛtvtt : mtt˜ÛtcttǐtÙt, ct˙t˜$tctC[ǐt mtt˜ÛtcttǐtÙt, ct˙$ttǐtÙt Sct˙ t˜ctYttit ytt`[‘ ltitt sttÙtt`it, #t`$tt`Ùt mt˙it9vtı 5. ct`âvõ jtū*t mtcytvOt : t˜ctOttÙtt`, utMttmtt˜vtctī, Ùtt`ptvtt Sct˙ t˜ctòtt`Ùtı 6. ītt`ctâ mt`ātt*tW : stt˜Ktǐt Yttjltt`Ùt, ct`īvõt`Ùt ltitt jtpÙt mt`cttÙtW, mt˙It Sct˙ jtpÙt ǐtt`ctī mt`ctt sttÙtt`it, ǐtt`ctī mt`ctctītW ctīt utt˜Mt#tCtı 7. *tt`ūtvtt lt˙īt : jt°^t`Ùt mltj Ftj Ùtt`ptvtt t˜vtOtt‘jCt, jt°^ t˜ctctītmt Ftt˜juto, Ùtt`ptvtt sttÙtt`it, jtpÙt/t˜ptǐtt mltj Ftj Ùtt`ptvtt lt˙$tı 8. ītt`ctâ #t`īt GFt›tâct : utctītj, GÛÛt mltjt`Ùt utytvOtvt, t˜vtÙt˙$tCt Sct˙ mtctmÙttÙtWı 9. ītt`ctâ ā*t*t ctât t˜vt*tvītCt : mt˙mtot`Ùt t˜vtÙt˙$tCt, t˜ctòt ct˙$ttǐtÙt ctīt` Yttt˜ctctīt, t˜vtÙt˙$tctī Sct˙ ctntǐt`Ktt Ftjt`#tctīı 10. ctâtvt˛vt uāt˙ ā*tātmstt mtcytvOtt` ØtMttmtvt : ctītvttvt Sct˙ cÙtctmitt ytvttÙt` jKtvt` ctW ct`īvõt`Ùt ltitt jtpÙt stt˜YtctījCttW ctīt` Yttt˜ctctītı 11. jtū*t ØtMttmtvt : jtpÙtFttǐt, ct¸KÙtct˙$tt` ct˙t˜$tFtt˜juto, ct¸KÙt mtt˜Ûtct, mtt˜ÛtcttǐtÙt, t˜vto`MttǐtÙtı 1n. t˜ūtītt ØtMttmtvt : Yttt˜ctctīt Sct˙ ctnlct, t˜ptǐttt˜Otctītjt`, Yttjtptmct, ctītvttvt Sct˙ cÙtctmitt ltitt t˜ctctītmt mtcytvOtt` ctītÙt‘, t˜ptǐtt «ttcÙt t˜ctctītmt stt˜YtctījCt ltitt «ttctt`Ct #t`$ttW ct`ī t˜ǐtÙt` t˜ctMt`ut ctītÙt‘›tīctı 13. msttvtt`*t ØtMttmtvt : Ft˙ÛttÙtltt`jtpt Sct˙ vtitjt`Ùt mittvtt`Ùt Mttmtvt: ǐt#tCt, utctītj Sct˙ mtctmÙttÙtW, mittvtt`Ùt t˜vtctītÙttW ctīt` mcttÙtòtlttı 14. ctâī*ttCt n`lt¸ ØtMttmtvt : stvt¸mttt˜Ûtlt pttt˜lt, stvt¸mttt˜Ûtlt ptvtpttt˜lt ct`ī t˜ctMt`ut mtvoYt‘ ctW ctīctptt`j ctittX ct`ī ctīǐÙttCt ct`ī t˜ǐtÙt` utMttmtvt, ctt˜nǐtt ctīǐÙttCt n`lt¸ ctītÙt‘›tīctı 15. Yttjltt`*t ØtMttmtvt ct`â Øttmt˙t˜itctâ ct¸ö` : jtptvtt`t˜ltctī Sct˙ mittÙtt` ctītÙt‘FttǐtctītW ct`ī ytt`Ût mtcytvOt, utMttmtvt ctW mtcttvÙtzt Sct˙ t˜ctMt`utzt, utMttmtvt ctW mtlÙtt˜vt‰t, utMttmtvt ctW ptvtmtnYttt˜itltt, ptvtltt ctīt` t˜MtctītÙtlttW ctīt t˜vtcttjCt, ǐtt`ctīFttǐt Sct˙ ǐtt`ctī sttÙt¸òtī, Yttjlt ctW utMttmtt˜vtctī mt¸Ottjı
33. ct˛ât˜<t ⭲tt˜Yt*tt˙t˜ītctât` - Øtstct ØtMvt-Ftīt
(a) Fluid Machanics : Fluid properties, units and dimensions, mass, momentum and energy conservation principles: special cases of Navier-stoke equation, vorticity. flow of fluids in pipes and channels, frictions factors: turbulence; instruments and measurement systems. (b) Heat and Mass Transfer: Thermal properties of materials units and dimensions steady state and transient heat conduction natural and forced convection; boiling, condensation, thermal radiation exchange; heat exchangers, heat-mass transfer analogy: xxxx’x laws, psychrometrics; analysis of heat and mass transfer processes: instruments and measurments systems. (c) Surveying, Levelling and land Development : Linear measurements; different surveying devices and methods land grading and levelling; controuring and terracing earth work estimation, land and development budgeting earthmoving machinery (d) Pumps: Design, construction, performance characterization. selection, installation, Servicing and maintenance of reciprocating, centrifugal, gear, turbine, submersible, propeller, jet and lift pumps and hydraulic ram; renewable and non renewable power sources for pumps. (e) Process and food Engineering: Unit operation in post-harvest processing (cleaning, grading, drying, size reduction, evaporation, pasteurization, distillation): processing of food grains, animal feed, seeds, frutis & vegetables, flowers, spices, dairy products, eggs and meat, design of processing equipment and systems. (f) Storage and Handling Engineering : Changes in stored products during storage: storage of food grains & their products, feed fruits and vegetables, flowers, spices, dairy products,eggs and meat, air right ventilated, refrigerated, modified atmosphere and controlleed atmosphere storage systems; packaging, conveyors; design and management of storage and handling systems. (g) Rural Engineering : Buliding materials and their properties. design of beams, slabs, columns and foundations: fencing: planning and design of rural houses, farm roads, village drainage systems waste disposal and sanitary structures, material and cost estimation in construction; integrated rural energy planning and development: rural electrification.
ct˛ât˜<t ⭲tt˜Yt*tt˙t˜ītctât` - t˜Éltt`*t ØtMvt-Ftīt
(a) Thermodynamic and Heat Engines : Concept of energy temperature and heat Equation of State Laws of thermodynamics; pure substances and properties; entropy. boilers; boiler efficiency steam, engine and turbines; rankine, air standed xxxx, diesel and joule cycles, indicator diagrams;
I.C. Engines (b) Farm Power : Sources of power on farm; farm power and agricultural productivity relationship; comparison of tractor/engine power with animal power, operation and constructional features of l.C. engines. various systems present in I.C. engines viz. carburation, ignition cooling lubrication. Starting and electrical system, valves and valve timings; special features of diesel engines. tractors; their classification,,power transmission, clutch, drawbar, three- point hitch. p.t.o belt and pulley: tractor controls; tractor chassis, stability, trouble shooting, repair and maintenance of tractors, tractor testing economics of tractor utilization, small tractors and power tillers: their economics and suitability (c) Farm Machinery : Design, construction, operation, repair and maintenance of primary and secondary tillage tools: implements and machines viz. m.b. plough, disc plough, hoe, harrow and cultivator; seeding, planting and transplanting machines, weeders ; sprayers and dusters; forage harvesters and movers: harvesters, threshers, winnowers and combines, crop and soil factors affecting machine performance and energy requirements, economics of tractorization, combining and other machanized operations; selection of farm machines. (d) lrrigation Engineering : Water resources of India; soil water plant relationship permeability infiltration; percolation; evaporation; water requirements of crops and irrigation scheduling, direct and indirect mothdos of soil mositure measurements; measurements of irrigation water, weirs and notches, orific, xxxxxxxx flumes. H- flumes, etc water conveyance and control; design of fields channels and canals; lacey and xxxxxxx’x theories most economical challel cross section; selection of underground pipe line structures and their design; irrigation methods- their hydraulics and design viz., border furrow, flood drip & sprinkler methods; concepts in i irrigation efficiencies. (e) Drainage Engineering : Benefits of drainage; hydraulic conductivity, drainable porosity, drainage coeffecient; surface drainage: drainage of flat and sloping lands; design of open ditches, their alignment and construction; design and layouts of sub surface drains: depth and spacing of drains and drainage outlets. installation of drains and drainage xxxxx. drainage of salt affected areas (f) Soil and Water Conservation Engineering : Forms of precipitation: hydrologic scycle; point rainfall analysis, frequency analysis, watershed definition and concept agricultural watersheds. prediction of peak runoff; factors attecting run- off hydrograph, concept of unit and instantaneous hydrogaphs erosion control meaasures on various classes of lead viz controur cultivation, strip cropping, terracing afforestation, pastures, etc. a critical analysis of the role of vegetation in soil and water conservation; grassed waterway