Partneravtal
Partneravtal
avseende forskningsprogrammet
Wallenberg Initiative Materials Science for sustainability (WISE)
Detta avtal har träffats mellan
(1) WISE genom Linköpings universitet (org. nr. 202100-3096), 581 83 Linköping (”LiU” eller ”Värduniversitetet”); och
(2) Luleå tekniska universitet (LTU),
Parterna benämns nedan var för sig ”Part” eller gemensamt ”Parterna”.
1. BAKGRUND OCH FÖRUTSÄTTNINGAR
Xxxx och Xxxxx Xxxxxxxxxxx stiftelse (KAW) har beslutat att bidra med finansiering till forskningsprogrammet WISE (bilaga 1) där XxX är värd.
LiU och de fem andra lärosäten som ingår i WISE har tecknat ett samverkansavtal som reglerar samarbetet i forskningsprogrammet. De definitioner och förklaringar som gäller för det samverkansavtalet gäller även för nu aktuellt avtal om inte annat tydligt framgår. Till WISE kan andra aktörer knytas som har mer begränsade åtaganden inom WISE. Dessa benämns Partner. Detta avtal syftar till att reglera LTU:s medverkan som Partner i WISE.
Programmet har avsatt medel för 13 rekryteringspaket, som utlyses 2022 varav ett på LTU. Ytterligare ett rekryteringspaket som utlysts vid LTU i samband med utlysningen 2022 kan komma att finansieras av programmet. Förutsatt att medel beviljas för 2027-2033 ska medel för ytterligare rekryteringspaket avsättas med utlysning 2027. Det kommer då att prövas i särskild ordning om ett rekryteringspaket finansieras vid LTU. Vidare kan LTU ansöka om projekt för doktorander, postdoktorer, industridoktorander och industri-postdoktorer vid de utlysningar som återkommande görs i programmet. LTU har en ordinarie representant i den universitetsrepresentativa gruppen (URG) som upprättats enligt WISE Samverkansavtal (bilaga 2).
2. AVTAL OCH STYRANDE DOKUMENT
Detta avtal består av följande handlingar:
- Eventuella tillägg till Avtalet
- Detta partneravtal (”Avtalet”)
- KAW:s bidragsbeslut och tilläggsbeslut (”Bidragsbeslutet”), bilaga 1a-b
- WISE Samverkansavtal (”WISE-avtalet”), bilaga 2
Vid motstridigheter mellan dessa handlingar ska bilaga 1 äga företräde och därefter Avtalet med eventuella tillägg. Förutom Avtalet med bilagor så är WISE:s arbetsordning (”Arbetsordningen”) styrande för verksamheten.
Arbetsordningen utgör ett för WISE styrande dokument som hålls uppdaterat av Styrelsen.
XXXX:s övergripande ekonomiska åtaganden framgår av bilaga 1 och 2.
- LTU ska rekvirera medel för upparbetade kostnader tertialsvis enligt Värduniversitetets instruktioner.
- Tilldelning av medel till LTU beslutas av Styrelsen i enlighet med KAW:s bidragsbeslut.
- För det fall KAW inte beviljar fortsatta medel och redan beslutade medel inte räcker för att täcka lönekostnader för anställda personer kan LTU behöva stå för kostnaderna för återstående anställningstid.
Parterna är överens om att på de villkor som anges i Avtalet med bilagor och efter bästa förmåga driva och utveckla forskningsprogrammet.
LTU ska alltid främja XXXX som helhet och åtar sig att alltid hålla Programdirektören underrättad om den verksamhet som de själva bedriver och som avser samverkan under detta Avtal. I det åtagandet ingår bland annat att underrätta Programkontoret om verksamhetsförändringar hos LTU som kan vara av betydelse för forskningsprogrammet, exempelvis nyanställningar, avslutade anställningar och tjänstledighet. LTU ska hålla Programkontoret löpande underrättad om doktorandernas status. I författarlistan ska, förutom den egna organisatoriska hemvisten även Xxxxxxxxxx Initiative Material Scinence for Sustainability (WISE) anges (“affiliation for publication”). Vidare ska WISE och KAW omnämnas i ”Acknowledgements” när sådan finns. Vid publikation inom ramen för WISE bör författaren vara ansluten till ORCID och koppla ORCID till publikationen. Parterna ska medverka i WISE Faculty.
LTU ska informera anställda som finansieras genom WISE om skyldigheten att ange detta på de personliga hemsidorna vid lärosätet.
Forskningsprojekt eller andra samarbeten som bedrivs inom ramen för WISE i samverkan mellan två eller flera aktörer ska regleras genom särskilda skriftliga projektavtal. I sådana avtal ska principerna rörande immateriella rättigheter (exempelvis anställdas rätt till egna resultat) och publicering (exempelvis publicering av resultat som lärosätet medverkat till) som normalt tillämpas vid svenska lärosäten gälla.
LTU ska utse kontaktpersoner för administration, ekonomi och kommunikation vilka ska hålla löpande och behovsanpassad dialog med varandra och Programkontoret.
LTU ska i erforderlig utsträckning vara Styrelsen behjälplig med uppgifter för att Styrelsen ska kunna fullgöra sin rapporteringsskyldighet. Eventuella rapporter ska finnas tillgängliga hos Värduniversitetet.
7. LTU:S FÖRHÅLLANDE TILL ANSTÄLLDA M.FL.
LTU ansvarar gentemot XXXX för sina anställda och för konsulter, underleverantörer och andra anlitade medhjälpare såsom för sig själv. Vid gemensamt anlitande av medhjälpare för att utföra en uppgift gäller solidariskt ansvar.
LTU är medveten om att myndighetsanställda och andra anlitade medhjälpare inte ska lämna ut uppgift som är sekretessbelagd enligt Offentlighets- och sekretesslagen (SFS 2009:400) om inte lagskyddad möjlighet att göra det finns. LTU ansvarar även för att de medarbetare som deltar i forskningsprogrammet är medvetna om vad som här överenskommits och att de godtar vad som här överenskommits.
XXXX bedrivs som ett öppet forskningsprogram och dess information ska som utgångspunkt vara allmänt tillgänglig.
Med ”Sekretessbelagd Information” avses sådan information som lämnats inom ramen för forskningsprogrammet och som hos överlämnande part omfattas av sekretess enligt offentlighets- och sekretesslagen (OSL) samtidigt som sekretessen kan överföras till mottagande part med stöd i OSL eller på annat sätt skyddas av sekretess. För att underlätta sekretesshanteringen bör sådan information
-tydligt märkas ”sekretessbelagd”, ”hemlig” eller annat liknande; eller
-om den är muntligen lämnad, anges vara sekretessbelagd vid tiden för överlämnandet.
Mottagare av Sekretessbelagd Information förbinder sig vidare att inte använda Sekretessbelagd Information för annat ändamål än i enlighet med Avtalet eller WISE-avtalet eller avslöja Sekretessbelagd Information för tredje man utan den lämnande partens föregående skriftliga godkännande. Utlämnande av sekretessbelagd information får ske i enlighet med tillämplig lagstiftning. Som tredje man räknas inte part i WISE-avtalet eller part som ingår i affiliated groups of excellens.
Parternas samverkan under detta Avtal ska inte tolkas som att Parterna avtalat om samverkan i bolagsform. Ingen av Parterna äger rätt att företräda en annan Part gentemot tredje man om inte annat avtalats om.
Forskningsprogrammet redovisas som en tydligt avgränsad verksamhet hos respektive deltagande Part.
Detta avtal träder ikraft när båda Parter behörigen har undertecknat det och gäller till och med den 31 december 2033. För det fall WISE inte erhåller fortsatt finansiering från KAW ska WISE avvecklas och detta Avtal upphör automatiskt att gälla när WISE är avvecklat.
Part får frånträda detta avtal i förtid med sex månaders uppsägningstid. Det åligger Part att fullgöra samtliga sina förpliktelser som löper under uppsägningstiden.
Bidragsmedel som Part har erhållit för verksamheten men som inte har förbrukats vid Parts frånträde eller uteslutning eller vid avtalets upphörande ska återbetalas till Värduniversitetet eller KAW i enlighet med skriftligt meddelande från Värduniversitetet
Part som bryter mot detta Avtal är skyldig att skyndsamt vidta rättelse och fullgöra sina skyldigheter, förutsatt att fullgörelse rimligen kan påfordras. Härutöver ska Part som uppsåtligen eller av oaktsamhet orsakar annan Part skada
genom att bryta mot detta avtal ersätta skadan. Sådan skyldighet omfattar dock inte ersättning för indirekt skada eller följdskada samt ska vara begränsad till ett totalt belopp motsvarande LTU:s finansiella åtaganden enligt detta Avtal.
Om Part väsentligen bryter mot sina åtaganden i detta avtal och inte skyndsamt vidtar rättelse får den andra Parten säga upp Avtalet med omedelbar verkan.
Avtalsbrott får inte åberopas om det inte påtalas inom skälig tid från att det upptäcktes eller borde ha upptäckts (reklamation). Avtalsbrott får dock åberopas även om reklamation inte har skett, om den kontraktsbrytande Parten har handlat grovt vårdslöst eller i strid mot tro och heder.
Part ska under avtalstiden fortsätta att fullgöra sina förpliktelser även om Parten anser att annan Part har begått avtalsbrott, såvida Styrelsen inte beslutar annat för att avvärja risk för skada.
Omständigheter som parterna inte råder över (force majeure), som inträffar efter tecknande av detta avtal och hindrar dess fullgörande, ska utgöra befrielsegrunder.
Uppsägning till följd av avtalsbrott ska ske skriftligen.
12. MEDDELANDEN OCH UNDERRÄTTELSER
Där detta avtal anger att meddelande eller underrättelse ska ske skriftligen, ska även meddelanden via telefax och e- post gälla som skriftliga.
Beslut om ändring av eller tillägg till detta Avtal (med undantag för dess bilagor) ska vara enhälligt mellan Parterna. Ändringar och tillägg ska göras skriftligen för att kunna åberopas av Part.
Om en meningsmotsättning uppstår som inte kan lösas inom tio arbetsdagar av personer på operativ nivå hos Parterna, ska Parternas verkställande ledningar, eller motsvarande, liksom Styrelsen omgående informeras. Om Styrelsen misslyckas med att finna en förhandlingslösning inom 20 arbetsdagar från att informationen mottagits (eller inom annan tid som parterna kommer överens om), får envar berörd Part påkalla att medling enligt Stockholms Handelskammares Medlingsinstituts regler ska inledas. Om inte medlingen leder till en lösning inom 60 arbetsdagar från det att medlare utsetts, eller den längre tid som berörda Parter skriftligen enar sig om, får Part hänskjuta frågan till regeringen.
Detta avtal signeras via eduSign av vilka varje Part erhåller en validerad version. Här till har KAW samt Styrelsen erhållit en kopia av avtalet
Linköpings universitet Luleå tekniska universitet
Jan-Xxxxxx Xxxxxxx Xxxxxxxx Xxxxxxxx-Xxxxxxxx
Rektor Rektor
Partneravtal WISE Bilaga 1 a
Partneravtal WISE bilaga 1b
Partneravtal WISE bilaga 2
Samverkansavtal
avseende forskningsprogrammet
Wallenberg Initiative Materials Science for sustainability (WISE)
Detta avtal har träffats mellan
(1) Linköpings universitet (org. nr. 202100-3096), 581 83 Linköping (”LiU” eller ”Värduniversitetet”);
(2) Chalmers tekniska högskola AB (org. nr. 556479-5598), 412 96 Göteborg (”CTH”);
(3) Kungliga Tekniska högskolan (org. nr. 202100-3054), 100 44 Stockholm (”KTH”);
(4) Lunds universitet (org. nr. 202100-3211), Box 117, 221 00 Lund (”LU”);
(5) Stockholms universitet (org. nr. 202100-3062), 106 91 Stockholm (”SU”);
och
(6) Uppsala universitet (org. nr. 202100-2932), Box 256, 751 05 Uppsala (”UU”).
Parterna benämns nedan var för sig ”Part” eller gemensamt ”Parterna”.
1. BAKGRUND OCH FÖRUTSÄTTNINGAR
Xxxx och Xxxxx Xxxxxxxxxxx stiftelse (KAW) har beslutat att bidra med finansiering till forskningsprogrammet WISE (bilaga 1) där LiU ska vara värd. KAW har ambitionen att stödja WISE med 2 700 Mkr under perioden 2022-2033 och för de tre första åren har 270 Mkr reserverats.
XXXX ska verka för en omställning mot ett hållbart samhälle samtidigt som man flyttar gränserna för materialvetenskapen och gör Sverige till den ledande nationen inom fältet genom att skapa förståelse för, samt skapa och kontrollera komplexa material ner till atomnivå. För att uppnå detta ska WISE utveckla toppmodern design, synopsis, strukturering och karaktärisering av egenskaper och prestanda hos material och komponenter genom aktiviteter så som strategiska rekryteringar, forskarskola, forskningsarenor (WISE Research Areans – WIRA), teknikplattformar och nätverk av WISE-finansierade seniora forskare vid lärosäte (WISE Faculty).
Parterna enas härmed om att på de villkor som anges i detta Avtal efter bästa förmåga driva och utveckla forskningsprogrammet. Villkoren för bidraget anges i KAW:s bidragsbeslut (bilaga 1), vilket även anger ramarna för detta Avtal.
2. AVTAL OCH STYRANDE DOKUMENT
2.1. Samarbetet inom WISE regleras i första hand av:
- Eventuella tillägg till Avtalet
- Detta samverkansavtal (”Avtalet”)
- KAW:s bidragsbeslut (”Bidragsbeslutet”), bilaga 1
- Memorandum WISE (”Ansökan”), bilaga 2
eventuella tillägg.
Förutom Avtalet med bilagor så är WISE:s arbetsordning (”Arbetsordningen”) styrande för verksamheten. Arbetsordningen beskriver i mer detalj funktionernas roller och ansvar, däribland Styrelsens arbete. Arbetsordningen utgör ett för WISE styrande dokument som hålls uppdaterat av Styrelsen. Arbetsordningen får inte innehålla bestämmelser som står i strid med Xxxxxxx.
2.2. Andra lärosäten än Parterna kan komma att delta i olika delar av forskningsprogrammet och erhålla medel för aktiviteter. I dessa fall kommer ett avtal mellan Värduniversitetet, som representant för WISE, och lärosätet att tecknas.
3. WISE:S UPPGIFTER
3.1. XXXX huvuduppgift är att bedriva forskning inom området materialvetenskap.
För att genomföra huvuduppgiften ska WISE
- utlysa medel för strategiska rekryteringar och gästprofessorer,
- utlysa projektmedel för rekrytering av doktorander och postdoktorer,
- driva en nationell forskarskola för doktorander och postdoktorer,
- samverka med industrin genom så kallade forskningsarenor (WIRA), samt industridoktorandprojekt och industripostdoktorprojekt,
- skapa nya teknikplattformar och samverka med befintliga, samt
- samverka inom WISE Faculty.
4. EKONOMISKA ÅTAGANDEN
4.1.1. KAW har avsatt 2 700 Mkr för perioden 2022-2033. 270 Mkr har beviljats för perioden 2022-2024, därefter måste fortsättningsansökan göras i enlighet med KAW:s bidragsbeslut. Medlen ska användas inom ramen för de aktiviteter som framgår av bilaga 1 och 2.
4.1.2. Värduniversitetet ska, efter rekvirering från KAW, transferera medel till Part tertialvis eller enligt annan period som Styrelsen beslutar, mot redovisning av upparbetade kostnader.
4.1.3. Tilldelning av medel till respektive Part eller utomstående lärosäte beslutas av Styrelsen i enlighet med KAW:s bidragsbeslut.
4.1.4. För det fall KAW inte beviljar fortsatta medel och redan beslutade medel inte räcker för att täcka lönekostnader för anställda personer kan vardera Part behöva stå för kostnaderna för återstående anställningstid.
5. ORGANISATION OCH FUNKTIONER
5.1. Funktioner
- WISE ledas av en styrelse med elva ledamöter (”Styrelsen”) vilka utses av värduniversitetet i samråd med KAW,
- en vetenskaplig ledare (”Programdirektör”/“PD”) och biträdande vetenskaplig ledare (“Biträdande Programdirektör”/”Biträdande PD”) utses av Styrelsen efter samråd med KAW, samt
- en Operativ Styrgrupp (i beslutet ”WISE Styrgrupp”) utses av Styrelsen efter förslag från Programdirektören och efter samråd med KAW.
Utöver de av KAW särskilt beslutade funktionerna finns följande organ inom WISE:
- Universitetsrepresentativa Gruppen (URG): URG består av en representant och en biträdande från vardera Part samt eventuella andra ledamöter och adjungerade personer som framgår av Arbetsordningen. Dessa representanter är även Parternas kontaktpersoner. URG:s representanter arbetar under PD:s ledning och utgör en länk mellan å ena sidan respektive lärosätes strategiska och operativa funktioner och å andra sidan PD och PO (se nedan). URG bistår PD med utveckling av förslag till processer för WISE:s huvudaktiviteter och med råd grundade på vetenskaplig kompetens och kännedom om förhållandena på det egna lärosätet.
- Programkontor (PO): Till Operativa Styrgruppen kan knytas vissa stödfunktioner vid Värduniversitetet, exempelvis en forskningskoordinator och en administratör för att delta i den löpande verksamheten, dessa bildar Programkontoret. Programkontoret finansieras med KAW:s bidragsmedel.
En mer detaljerad beskrivning av organisationen framgår av Arbetsordningen. Styrelsen kan besluta om ytterligare funktioner och organ inom WISE.
5.2. Styrelsen
5.2.1. Styrelsen är WISE:s högsta beslutande organ. Styrelsen ska löpande ge KAW information om verksamheten men ska i allt övrigt agera oberoende av Parterna, PD (som har det operativa ansvaret) och andra organ som Styrelsen inrättar.
5.2.2. Genom undertecknandet av detta Avtal befullmäktigar Parterna Styrelsen att, inom de ramar som anges, företräda Parterna inom ramen för WISE:s löpande verksamhet. Parterna är införstådda med att denna fullmakt inte innefattar behörighet för Styrelsen att företräda enskild Part gentemot annan Part, KAW eller tredje man. Styrelsen har under inga förhållanden mandat att fatta beslut som innebär myndighetsutövning eller skadar Parts intressen.
5.2.3. Styrelsen ska ansvara för övergripande strategiska frågor, användning och fördelning av medlen samt ekonomisk uppföljning. Styrelsen beslutar om inriktning och mål för Parternas samverkan samt i de frågor som uppkommer och som inte enligt detta Avtal ska avgöras av Parterna själva eller av annan. Styrelsen ska vid sitt beslutsfattande lojalt verka för WISE:s bästa inom ramen för Parternas åtaganden och KAW:s Bidragsvillkor.
5.2.4. Av Arbetsordningen framgår bland annat Styrelsens arbetsfördelning, bestämmelser om sammanträden och beslutsförhet samt Styrelsens närmare uppgifter.
5.3. Programdirektör och biträdande Programdirektör
5.3.1. Programdirektören (PD) är operativt ansvarig chef för verksamheten och Biträdande Programdirektören (biträdande PD) agerar som dennes ställföreträdare. PD ska vara anställd vid Värduniversitetet och leda verksamheten både vetenskapligt och operativt liksom vara föredragande i Styrelsen.
5.3.2. Kostnaderna som är förenade med uppdraget täcks av WISE.
5.3.3. Närmare anvisningar för PD:s uppdrag framgår av Arbetsordningen.
5.4. Operativ Styrgrupp
Den Operativa Styrgruppen (ESG) bistår WISE med stöd i ledningsstrategiska frågor. ESG består av PD, biträdande PD och eventuella medlemmar som Styrelsen beslutar om.
6. PARTERNAS ÅTAGANDEN
6.1. Parterna är överens om att på de villkor som anges i Avtalet med bilagor och efter bästa förmåga driva och utveckla forskningsprogrammet.
6.2. Den verksamhet som Parterna bedriver inom WISE kan komma att bedrivas på olika platser över landet, dels vid Värduniversitetet, dels hos Part, dels hos externa aktörer. Oaktat detta ska Parterna alltid främja XXXX som helhet och de åtar sig därför att alltid hålla PD underrättad om den verksamhet som de själva bedriver och som avser samverkan under detta Avtal. I det åtagandet ingår bland annat att underrätta Programkontoret om verksamhetsförändringar hos Part som kan vara av betydelse för forskningsprogrammet, exempelvis nyanställningar, avslutade anställningar och tjänstledighet. Parterna ska hålla Programkontoret löpande underrättad om doktorandernas status.
6.3. Varje Part, med undantag för Värduniversitet, som har ett Programkontor, ska utse kontaktpersoner för administration, ekonomi, kommunikation och juridik vilka ska hålla löpande och behovsanpassad dialog med varandra och Programkontoret.
6.4. I författarlistan ska, förutom den egna organisatoriska hemvisten även Xxxxxxxxxx Initiative Material Scinence for Sustainability (WISE) anges (“affiliation for publication”). Vidare ska WISE och KAW omnämnas i ”Acknowledgements” när sådan finns. Vid publikation inom ramen för WISE bör författaren vara ansluten till ORCID och koppla ORCID till publikationen. Parterna ska medverka i WISE Faculty.
6.5. Parterna ska informera anställda som finansieras genom WISE om skyldigheten att ange detta på de personliga hemsidorna vid lärosätet.
6.6. Värduniversitetet ska tillse att den verksamhet som bedrivs vid Värduniversitetet och som avser Parternas samverkan under detta Avtal bedrivs som en separat enhet och att alla intäkter, utgifter och kostnader härvid särredovisas. Part ansvarar på samma sätt för verksamhet som bedrivs hos Part under detta Avtal.
6.7. Forskningsprojekt eller andra samarbeten som bedrivs inom ramen för WISE i samverkan mellan två eller flera Parter eller aktör som inte är Part i Avtalet ska regleras genom särskilda projektavtal. I sådana avtal ska principerna rörande immateriella rättigheter (exempelvis anställdas rätt till egna resultat) och publicering (exempelvis publicering av resultat som lärosätet medverkat till) som normalt tillämpas vid svenska lärosäten gälla.
7. RAPPORTERING
7.1. Styrelsen ansvarar för att lämna sådana rapporter till KAW som KAW kan komma att kräva om den verksamhet som bedrivits. Parterna ska i erforderlig utsträckning vara Styrelsen behjälplig med uppgifter
för att Styrelsen ska kunna fullgöra sin rapporteringsskyldighet. Eventuella rapporter ska finnas tillgängliga hos Värduniversitetet.
8. PARTS FÖRHÅLLANDE TILL ANSTÄLLDA M. FL.
8.1. Part ansvarar gentemot övriga Parter för sina anställda och för konsulter, underleverantörer och andra anlitade medhjälpare såsom för sig själv. Om flera Parter gemensamt anlitar samma medhjälpare för att utföra en uppgift svarar de solidariskt för medhjälparen.
8.2. Parterna är medvetna om att myndighetsanställda och andra anlitade medhjälpare inte ska lämna ut uppgift som är sekretessbelagd enligt Offentlighets- och sekretesslagen (SFS 2009:400) om inte lagskyddad möjlighet att göra det finns. Parterna ansvarar även för att de medarbetare som deltar i forskningsprogrammet är medvetna om vad som här överenskommits och att de godtar vad som här överenskommits.
9. SEKRETESS
9.1. XXXX bedrivs som ett öppet forskningsprogram och dess information ska som utgångspunkt vara allmänt tillgänglig.
9.2. Med ”Sekretessbelagd Information” avses sådan information som lämnats inom ramen för forskningsprogrammet och som hos överlämnande Part omfattas av sekretess enligt offentlighets- och sekretesslagen (OSL) samtidigt som sekretessen kan överföras till mottagande Part med stöd i OSL eller på annat sätt skyddas av sekretess. För att underlätta sekretesshanteringen bör sådan information
-tydligt märkas ”sekretessbelagd”, ”hemlig” eller annat liknande; eller
-om den är muntligen lämnad, anges vara sekretessbelagd vid tiden för överlämnandet.
9.3. Mottagande Part förbinder sig vidare att inte använda Sekretessbelagd Information för annat ändamål än i enlighet med Avtalet eller avslöja Sekretessbelagd Information för tredje man utan den lämnande Partens föregående skriftliga godkännande. Utlämnande av sekretessbelagd information får ske i enlighet med tillämplig lagstiftning.
10. AVTALETS OMFATTNING
10.1. Parternas samverkan under detta Avtal ska inte tolkas som att Parterna avtalat om samverkan i bolagsform. Ingen av Parterna äger rätt att företräda en annan Part gentemot tredje man om inte annat avtalats om.
Forskningsprogrammet redovisas som en tydligt avgränsad verksamhet hos respektive deltagande Part.
10.2. Detta avtal träder ikraft när samtliga Parter behörigen har undertecknat det och gäller till och med den 31 december 2033. För det fall WISE inte erhåller fortsatt finansiering från KAW ska WISE avvecklas enligt nedan och detta Avtal upphör automatiskt att gälla när WISE är avvecklat.
11. AVVECKLING OCH FÖRTIDA FRÅNTRÄDE
11.1. Avveckling av forskningsprogrammet ska alltid ske i enlighet med den avvecklingsplan som det åligger Styrelsen att upprätta. Parterna är eniga om att samverka på bästa sätt vid en avveckling av WISE.
11.2. Part får frånträda detta avtal i förtid med sex månaders uppsägningstid. Det åligger Part att fullgöra samtliga sina förpliktelser som löper under uppsägningstiden.
11.3. Parternas samverkan under detta Avtal ska fortsätta mellan övriga Parter utan hinder av att Part har frånträtt avtalet.
11.4. Bidragsmedel som Part har erhållit för verksamheten men som inte har förbrukats vid Parts frånträde eller uteslutning eller vid avtalets upphörande ska återbetalas till Värduniversitetet eller KAW.
12. AVTALSBROTT
12.1. Part som bryter mot detta Avtal är på begäran av drabbad Part skyldig att skyndsamt vidta rättelse och fullgöra sina skyldigheter, förutsatt att fullgörelse rimligen kan påfordras. Härutöver ska Part som uppsåtligen eller av oaktsamhet orsakar annan Part skada genom att bryta mot detta avtal ersätta skadan. Sådan skyldighet omfattar dock inte ersättning för indirekt skada eller följdskada samt ska vara begränsad till ett totalt belopp motsvarande vad Parten erhållit i bidragsmedel under föregående år (första året ska beloppet uppgå till vad Part ska erhålla under det innevarande året enligt fastslagen budget).
12.2. Part som väsentligen bryter mot sina åtaganden i detta avtal och inte skyndsamt vidtar rättelse kan uteslutas ur WISE, förutsatt att Styrelsen, efter samråd med KAW, enhälligt biträder beslutet om uteslutning (jäv föreligger för den Part som beslutet avser).
12.3. Avtalsbrott får inte åberopas om det inte påtalas inom skälig tid från att det upptäcktes eller borde ha upptäckts (reklamation). Avtalsbrott får dock åberopas även om reklamation inte har skett, om den kontraktsbrytande Parten har handlat grovt vårdslöst eller i strid mot tro och heder.
12.4. Om flera Parter drabbats samfällt av avtalsbrottet får krav på fullgörelse eller rättelse framföras av Parterna samfällt eller av Styrelsen. Varje drabbad Part får för övriga Parter framföra reklamation för samtliga drabbade Parters räkning. Varje drabbad Part får framföra skadeståndsanspråk.
12.5. Part ska under avtalstiden fortsätta att fullgöra sina förpliktelser även om Parten anser att annan Part har begått avtalsbrott, såvida Styrelsen inte beslutar annat för att avvärja risk för skada.
12.6. Omständigheter som parterna inte råder över (force majeure), som inträffar efter tecknande av detta avtal och hindrar dess fullgörande, ska utgöra befrielsegrunder.
13. MEDDELANDEN OCH UNDERRÄTTELSER
Där detta avtal anger att meddelande eller underrättelse ska ske skriftligen, ska även meddelanden via telefax och e-post gälla som skriftliga. Meddelanden till Part med anledning av dennes kontraktsbrott får åberopas även om de försenas, förvanskas eller inte kommer mottagaren till handa, förutsatt att meddelandet har avsänts på ett ändamålsenligt sätt. Befordring av övriga meddelanden sker på avsändarens risk.
14. ÄNDRINGAR OCH TILLÄGG
Beslut om ändring av eller tillägg till detta Avtal och dess bilagor ska vara enhälligt mellan Parterna. Ändringar och tillägg ska göras skriftligen för att kunna åberopas av Part.
15. TVISTELÖSNING
15.1. Om en meningsmotsättning uppstår som inte kan lösas inom tio arbetsdagar av personer på operativ nivå hos inblandade Parter, ska de berörda Parternas verkställande ledningar, eller motsvarande, liksom Styrelsen omgående informeras. Styrelsen ska med skyndsamhet ansvara för att förhandlingar inleds mellan de operativt ansvariga för respektive berörd Part, PD och den eller de styrelseledamöter som Styrelsen utser för ärendet.
15.2. Om Styrelsen misslyckas med att finna en förhandlingslösning inom 20 arbetsdagar (eller inom annan tid som parterna kommer överens om), får envar berörd Part påkalla att medling enligt Stockholms Handelskammares Medlingsinstituts regler ska inledas. Om inte medlingen leder till en lösning inom 60 arbetsdagar från det att medlare utsetts, eller den längre tid som berörda Parter skriftligen enar sig om, får Part hänskjuta frågan till regeringen alternativt allmän domstol i de fall en tvistande Part inte är statlig myndighet.
Detta avtal signeras via eduSign av vilka varje Part erhåller en validerad version. Härtill har KAW samt Styrelsen erhållit en kopia av avtalet.
Linköpings universitet Chalmers tekniska högskola
Xxx-Xxxxxx Xxxxxxx Xxxxxx Xxxxxxxxx
Rektor Rektor
Kungliga tekniska högskolan Lunds universitet
Xxxxxxxx Xxxxxxxx Xxxx Xxxxxxxx
Rektor Rektor
Stockholms universitet Uppsala universitet
Xxxxxx Xxxxxxxxx Xxxxxxx Xxxxxx Xxxxxxxx
Rektor Rektor
Samverkansavtal WISE Bilaga 1
WISE Samverkansavtal Bilaga 1
WISE Samverkansavtal bilaga 1
WISE Samverkansavtal Bilaga 1
WISE Samverkansavtal Bilaga 2
WISE 2021-10-29
Memorandum
Wallenberg Initiative Materials Science for Sustainability
(WISE)
A Proposal for a research program to
enable sustainable technologies with impact on our society by understanding, creating and controlling complex materials with a precision down to the single atom level
AuŁhors:
Xxxxxx Xxxxxxxx (chairman, LiU), Xxxx Xxxxxxxx (vice chairman, UU), XxxXxx xx Xxxxx (KAW), Xxxx Xxxx (KTH), Xxxxxx Xxxxx (LU/LTH), Xxxxxx XxxxxxxxX (Xxxxxxxx) Xxx-Xxxxxx Xxxxxxxx (SU) and Xxxxxxx Xxxxx (LiU)
Contents
1 Materials Science for Sustainability – Vision and Mission 3
2 Materials and Sustainability 4
3 Overview of Materials Science 5
4 WISE Program Areas 6
5 Needs in Society and Industry 10
6 WISE Faculty and Research Constellations 13
7 WISE in relation to other program initiatives 15
8 Strategic Recruitments 15
9 WISE postdoc and graduate school 16
10 Science and Technology Platforms 17
11 WISE Research Arenas - WIRA 18
12 Organization 19
13 Communication and Events 19
14 Budget and Implementation 20
15 Gender Balance 20
16 Evaluation and International Benchmarking 20
17 Appendices 22
18 References 29
1 Materials Science for Sustainability – Vision and Mission
Materials provide the physical and structural basis for our highly advanced society. Major efforts conducted during the past centuries in materials science and engineering have led to complex and high-performing products, constructions and technologies. This development has enabled a society where healthcare, communication, infrastructure, and digitalization perform in a highly sophisticated and effective manner. However, the facilitating components, made from advanced materials, require energy and are traditionally derived from non-recyclable origins. The associated pollution and over-consumption of natural and mined resources has driven humanity and society into a state of imbalance versus nature, including the atmosphere, hydrosphere and biosphere. New, fundamental knowledge is thus needed to derive materials that reroute civilization onto a pathway towards a sustainable society that lives in balance with our valuable and limited resources.
The Wallenberg Initiative Materials Science for Sustainability (WISE) is the research and training program targeting:
Vision:
Materials science that enables a sustainable world.
Mission:
To perform basic and need-driven materials science at the international forefront, to empower sustainable technologies with positive impact on society, and to train future leaders in society, industry and academia in Sweden.
Goal:
WISE will promote and activate a transition towards a sustainable society, while pushing the scientific frontier in materials science to new vistas that firmly establish Sweden as a leading nation in the field. WISE aims to explore and research advanced, functional materials targeting the following thematic areas:
i. conversion, storage and distribution of clean energy
ii. circular materials replacing rare, energy-demanding and hazardous materials
iii. mitigation, cleaning and protection of the atmosphere, soil and water, and
iv. discovery of materials for novel sustainable technologies and applications.
WISE will address these tasks by understanding, creating, and controlling complex materials with a precision down to the single atom level. In order to accomplish this, WISE will evolve the state of the art in the design, synthesis, structuring and in the characterization of properties and performance of materials and devices. Within this context, materials are here classified as both hard and soft materials in the broadest manner (e.g. alloys, semiconductors, ceramics, polymers, oxides, metals and hybrids thereof) and will be investigated and explored in WISE, excluding the fundamental studies and engineering of materials derived from the forest (already being conducted in the WWSC).
Specifically, efforts will be devoted to identifying new or significantly improved materials, which provide a distinct advantage in physical, chemical, biological, or functional performance when compared to existing materials and technologies. This relates to materials that demand less resources, are less environmentally hazardous, and enable sound and efficient recycling processes. WISE will also explore materials that when used in energy technology, generate less
negative climate impact under operation, while offering high performance and efficiency when in action at large scales.
2 Materials and Sustainability
Materials derived from renewable or non-renewable resources have profoundly affected the development of our society. The utilization of materials from natural resources in production and consumption processes can be linked to many environmental, economic and social consequences that spread beyond national borders. The global annual use of resources amounted to nearly 90 billion metric tons in 2017 and is forecasted to double by 2050. This increase will mainly be caused by a shift in materials extraction from Europe and America to Asia and Africa1. Today, 60% of all materials are already extracted in Asia, and the world primary production of materials accounts for a quarter of all global greenhouse emissions2. The repertoire of materials derived from natural resources are predominantly represented by metals, construction minerals, fossil energy carriers and biomass3. The prime production of metals alone exploits about 8% of the global energy production. In addition, our dependence on raw materials from all parts of the world is associated with severe environmental, human rights and global politics issues.
Although the production and extraction of materials are connected to environmental strain, their use is paramount in transforming our world towards a sustainable society. Functional materials are simply the most important parameter in the ambitions to accomplish green growth, since they form the physical components of future, greener technologies and circular economies. An agenda is being carved out in the materials science community and in relevant industries to aid such a transformation and to promote future business and society settings.
This spearheading agenda is fully aligned with the major efforts undertaken by the international community in recent years. In 2015, the General Assembly of the United Nations (UN) adopted the Resolution “Transforming our world: the 2030 Agenda for Sustainable Development”. This resolution is based on five values (People, Planet, Prosperity, Peace and Partnership) and the associated 17 Sustainable Development Goals (SDGs) were generated to give explicit guidance for the future. In December 2015, 196 countries signed the Paris agreement which states that the raise in global mean temperature should be maintained below 2°C, preferably less than 1.5°C. With this legally binding international treaty on mitigating and combating climate change, individual countries should undertake the necessary actions to outline adequate protocols. Materials connect to nearly all the SDGs (appendices a and b) and the materials science area is certainly critical for energy technology and the materials circularity of the future. The urgency in undertaking fast and firm measures was further confirmed by the recently (August 2021) published IPCC report4.
The materials science community must now research and develop the performance of sustainable material technologies along the entire havvesŁiug-Ło-disŁvibnŁiou chain of green energy, throughout the complete loop of e7ŁvacŁiou-Ło-vec7cIiug, and for miŁigaŁiou, cIeauiug, aud pvoŁecŁiou, see Fig. 1. In addition, scientific discovevies and breakthroughs in materials science are needed to make the necessary large leaps in knowledge that enable future innovations for uoveI snsŁaiuabIe ŁechuoIogies aud appIicaŁious, especially targeting improved energy efficiency. The scientific community is here already at duty and is performing, which is exemplified by several recent important breakthroughs, such as engineered living materials to manufacture bioplastics5, near complete depolymerization of polyesters using enzymatic
systems6, electrocatalytic production of hydrogen peroxide fuels using all-organic electrodes7, the identification of new classes of superconductors with critical temperatures approaching room temperature8 and the discovery of materials with reduced dimensionality for solar cells9.
Figure 1. The harvesting-to-distribution chain of clean energy, the extraction-to-recycling loop of circularity, mitigation, cleaning, and protection, and discoveries of materials for sustainability.
3 Overview of Materials Science
Materials science defines the area of research casing discoveries and design, along with characterization, of novel materials. All forms of materials are embraced in the field and basic science of hard and soft solids together with fluids are conducted, with activities also found in molecules in the gas state. Materials science originally stems to a large extent from metallurgy and from studies of minerals and ceramics. A proven strategy of materials research over the last few decades stands on the five pillars for combined operations of a) design and modelling,
b) synthesis and processing, c) structures, d) properties, and e) performance. However recent high-tech materials discoveries have led to an extended classification, represented by semiconductors, functional materials, biomaterials, heterostructures, materials with reduced dimension, topological materials, and nanomaterials. With WISE, sustainability in the design, operation, and decommissioning will be integrated, thus avoiding material science based on the classical trial and error approaches.
When reviewing recent international conference calls and publications covering trends in materials science, the area stretches out in several specific directions. Sustainability and energy technology are by far the strongest driving forces in the field today, followed by novel and high- performing materials for technology, healthcare, biotechnology and constructions. Major efforts are currently being focused on:
• advanced theoretical studies of materials by high-throughput calculations and artificial intelligence, combined with massive computation power, for the design of new functional materials,
• exploring sustainable energy-enabling materials based on abundant elements and components,
• developing green chemical and physical processes to achieve materials and nanostructures, optimizing transport and reactions of matter (gas and liquids), to improve the performance of energy technologies (e.g. batteries, photovoltaics and fuel cells), and
• combining several advanced characterization techniques to gain deeper insights to, and validate the performance of energy and circular materials, iu siŁn and xx opevaudi.
The evolution of maŁeviaIs scieuce, as a solitary research field, can be monitored and compared based on the total number of scientific publications generated globally. One finds that xxXxxxxXx scieuce currently represents close to 7% of the total output of scientific publications and the area increased by ~140% during the period 2002 to 2016. This makes materials science one of the fastest growing research areas world-wide10. Regarding the annual number of published articles, China, USA and Japan hold the first, second and third positions, respectively. They are followed by 5 European countries; Germany, France, England, Italy and Spain, that position themselves within the top-20, globally10.
Several outstanding and revolutionary discoveries have been made in materials science, with immense impact on science and society. The Nobel prizes awarding discoveries in physics 2007 (for magnetic data storage), 2009 (optical fibers), 2010 (for the discovery of materials with reduced dimension), and 2014 (light emitting diodes) serve as good examples, as do the Nobel prizes in chemistry 2007 (catalysis), 2011 (quasicrystal) and 2019 (lithium-ion battery). Equally important discoveries are found in techniques that are crucial for characterizing materials, e.g. X-ray photoelectron spectroscopy (Nobel prize in Physics 1981), transmission electron microscopy and scanning probe microscopy (Nobel prize in Physics 1986) and density functional theory (Nobel prize in Chemistry 1998). These and other advances have led to an unprecedented ability to control, characterize, and understand materials.
For tech-industry, in general, functional materials for sustainability and energy applications are well represented as frontier trends of established companies, as well as for start-ups. For instance, ue7Ł-IeveI pvocess anŁomaŁiou, fnŁnve biomachiues, ue7Ł-geuevaŁiou smavŁ maŁeviaIs and cIeau ŁechuoIogies all rely directly on high-performing advanced and sustainable materials.11 We also identify trends that typically include vespousive maŁeviaIs,
uauoŁechuoIog7, addiŁive maunfacŁnviug, XxxxX-xxxxxX maŁeviaIs, maŁeviaI iufovmaŁics and
advauced composiŁes.
4 WISE Program Areas
The WISE program will address the most challenging scientific questions in materials science, as schematically illustrated in Fig. 2. Advanced materials science must necessarily rely on design combined with simulation/theory, synthesis, nano-structuring, processing, characterization and evaluation of properties. From a sustainability point of view, it is also highly relevant to assess the materials flows from reactants to waste, i.e. how process waste and energy needs can be minimized in the recycling of critical materials, how mining of materials can be achieved with minimal detrimental environmental impact, and how to identify greener routes from mineral to material. Many challenges of our society are coupled to the transformation, storage, and distribution of energy. Technologies with small environmental impact primarily operate by the conversion of sunlight and wind to electrical power. Electrification of transport demands
advanced batteries and fuel cells based on non-fossil fuels, with the ability to efficiently store energy. Hydrogen and other energy carriers are likely to contribute more to society and industry in the future, which calls for materials for reliable conversion, transport, and storage of energy.
For the reasons outlined above, four thematic areas are identified in WISE: i) conversion, storage and distribution of clean energy, ii) circular materials replacing rare, energy- demanding, and hazardous materials, iii) mitigation, cleaning and protection of the atmosphere, soil, and water and iv) discovery of materials for novel sustainable technologies and applications. These program areas, as detailed below, will be investigated according to the bar-chart in Fig. 2, with the goal of securing technologies that support our energy and materials demanding society in an environmentally friendly fashion.
Figure 2. Research areas (green and blue) and thematic areas (grey) in WISE.
Research areas:
a) design and modelling: Theoretical methods that allow the design and modeling of new materials have matured and are used in all fields of materials science. This involves electronic structure methods based on density functional theory, molecular dynamics simulations and Monte Carlo techniques. Lately, this field also involves data-filtering methods of huge databases, where hundreds of thousands of compounds listed (for instance in the Inorganic Crystal Structure Database – ICSD and Cambridge Structural Database - CSD) and screening tools are designed to extract materials with specific properties. High throughput electronic structure calculations have been a key ingredient in this development. Furthermore, machine learning methods are increasingly being used in theory-guided materials science. Although the methods used in theoretical materials research are to some extent sufficiently accurate and efficient in many areas, there is still need for major improvements in this field. As an example,
it can be noted that theoretical calculations of X-ray and electron spectroscopy pose a significant problem for existing methods.
b) synthesis and processing: In a wide perspective, synthesis can involve many levels of sophistication from the extraction and recovery of specific elements or materials components to the designed synthesis of specific molecular motifs and materials with predicted properties, also involving composites, hybrid materials and materials with specific topology or multi-scale ordered structures, as well as low-dimensional materials and atomic scale control. Synthesis is performed in the vapor, liquid or solid states. For materials to ultimately become useful in large- scale applications, aspects of sustainable and efficient post-synthesis processing and upscaling are important, like by heat treatments to drive secondary phase transformations.
c) structures: This involves architectures of matter ranging from Ångström dimensions, via nanostructures and mesoscopic sizes to macroscopic constructions and include materials- defined functions at different dimensional levels. Materials structures represent the crucial instrument to introduce specific properties and performance parameters that together form desired advanced functions for a resulting material targeting specific applications. Structures are formed, e.g. via synthesis, interface engineering, self-organization, etching, and additive manufacturing. Electrode and membrane materials for fuel cells are archetypical examples of complex structures, which enable transport of reactants and components, in gas and liquid phases, along with charge transport.
d) properties: Materials are designed and produced for a special purpose and thus target specific properties. For instance, light-harvesting materials in solar cells must provide efficient conversion of the energy of light to electric energy, with subsequent fast conduction of the energy rich charge carriers produced, while minimizing recombination losses for ultimate high yield for usage or storage. Materials properties depend on the composition, as well as the structure and topology at different length scales. Therefore, detailed characterization of properties in relation to the structure and physical mechanisms is essential enabling targeted applications.
e) performance: Performance investigations represent the benchmark of a material or a device with respect to the requirements of an intended application. Examples involve investigations of high-frequency capabilities, energy consumption, and lifetime of electro-optical devices; the energy density, rate of loading/unloading and cyclability of energy storage materials; hardness, toughness and temperature tolerance of materials for industrial tools; and the weight, load, and durability of structural materials. Materials are also used in catalytic applications, e.g. in the synthesis of organic compounds and fuels based on hydrogen, and in various sustainable applications. These performance parameters must also be coupled to the environmental impact of the materials that is being used.
Materials characterization will be essential to and integrated in all the five themes, given above. Characterization includes chemical, physical, electrochemical, spectroscopic, imaging as well as diffraction techniques that provide an insight into the materials structure, composition and properties, from the atomic level up to macroscales. Characterization will require everything from lab-scale instrumentations via accumulated local or regional resources, such as technology platforms, to national laboratories like MAX IV. Further, recent advances of iu siŁn and iu opevaudi methods ensure that scientists can investigate materials and couple their fundamental characteristics to a performance also under operation.
Thematic areas:
i) conversion, storage, and distribution of clean energy: Renewable energy from intermittent sources, such as solar and wind power, needs to be harvested and converted into suitable energy-rich carriers that can be readily used or efficiently stored and transported. In this context, hydrogen produced from water electrolysis and fuels produced using CO2 as source are examples that pose significant materials challenges. In order to handle the lack of balance in supply and demand of energy and power, energy storage solutions are critically needed and, in this aspect, low-cost materials with high energy storage capacity are required. This includes batteries and supercapacitors for storage of electricity. It also involves catalytically active materials for the conversion and storage of energy in chemical forms, such as hydrogen and redox-active molecules, including the storage of thermal energy, e.g. using the energy embedded in molecular isomerization. Many of the existing materials used in these applications include noble, rare, and non-sustainable elements that rule out implementation on a global scale, with the consequence that there is a significant need for the exploration of sustainable alternatives. Functionalized, porous, structured materials have recently seen significant progress regarding for instance enabling the replacement of noble metals as fuel cell catalysts. Finally, energy must be distributed and used as efficiently as possible. Higher quality, wide band gap semiconductors will help to reduce losses in power conversion, and novel electronic materials will allow efficient use of electricity in computing, data transfer and appliances, breaking the currently rapid growth in global electric power consumption.
ii) circular materials replacing rare, energy-demanding, and hazardous materials: Many commercial actors rely on technologies that operate by use of materials associated with challenges in terms of sustainability, i.e. materials that involve critical or environmentally hazardous elements, that are extracted under dubious mining conditions, or cause a negative environmental imprint in other ways. Emphasis will be devoted to investigating metals, ceramic materials and other construction and engineering materials from a clean energy point of view, in particular targeting new materials systems formed under CO2 neutral conditions (e.g. green steel). This thematic area also involves research on bioplastics, developed materials systems from the forest and light composites, and their applications. Further, examples under this thematic area involve cobalt, a critical element that for instance is used in hard metals (tungsten carbide in a cobalt matrix) and cobalt oxide-based materials used as electrode material in the best performing Li-ion batteries. Permanent magnets used in wind power plants highlight another example, where primarily controversial mining, extreme Chinese dominance of the world market, and the price of rare-earth metals pose major challenges. Therefore, new technologies based on sustainable materials and processes for materials recycling represent key targets for a sustainable development.
iii) mitigation, cleaning and protection of atmosphere, soil, and water: Emissions to the environment from human activities represent the main source of pollution problems. Over the past decades, materials science has provided technical solutions to efficiently abate emission of for instance volatile organic compounds, SOx and NOx by conversion over catalytically active, nanostructured and porous materials. Now, the global concern is focused on strategies for the collection and conversion of CO2 to mitigate the anthropologically caused global warming effects. Designed materials for selective absorption and chemical conversion are central to such
strategies, for instance involving versatile energy carriers, such as methanol or hydrogen, obtained from renewable energy sources. In this area, both photocatalysts and enzymatic conversion have shown progress, but challenges remain, and more efficient materials are needed. Mitigation of point source emission will also demand novel materials, for instance regarding the capture of CO2. Existing polluted sites in soil, at sea or in the air, will require further development of cleaning processes based on materials optimized for specific separation, or extraction of targeted pollutants from the exposed matrix. In the long-term perspective, replacement of existing technologies giving rise to environmental hazards will rely on the discovery of completely new materials.
iv) discovery of materials for novel sustainable technologies and applications: Discoveries will be an integral component in i) to iii). However, in this thematic area we want to emphasize the importance of breakthrough research. Over the next fifty years, we can be certain that new technologies and applications will and must emerge, enabled by breakthrough discoveries of materials with novel and advanced performance and properties. Such discoveries will typically be unforeseen, unplanned and emerge from side-projects to larger programs. A scientific freedom for the unforeseen discoveries of new materials must therefore be a significant ambition of a visionary scientific program. For this reason, we propose to devote 20% of the budget to high risk and high reward research, with a 10+ years perspective regarding sustainable applications. It is foreseen that research within WISE will explore and advance the understanding of materials for: information technology systems and high-tech devices that use orders of magnitude less energy; affordable solar cells with power conversion efficiency near the theoretical limit; design of implicit properties in technology, construction and consumable materials that can be converted and disassembled into desired units and precursors allowing a conversion from today’s linear to sustainable circular materials flows; upscaling and processes for advanced functional materials to enable large scale sustainable technologies; superconductivity at room temperature, which alone would solve a series of energy-related challenges; high energy density storage far beyond existing limitations. Ever since the industrial revolution, large scale production of chemicals via catalysis has enabled affordable products and increased the standard of living, where the catalytic production of ammonia for ultimate use in fertilizers may be the for society most clear example. Materials play a key role in catalytic processes enabling sustainable chemical synthesis of base- and fine chemicals, as well as fuels that in the future can become sustainable.
5 Needs in Society and Industry
Advanced materials play a significant role in Swedish society, with forest, mining, steel, and chemical industries playing a vital role in building our nation’s wealth. Advanced materials, and materials science and technology will also play a decisive role for our transition to a sustainable society, e.g. for electrifying transport, decarbonizing steel production and giving us new sustainable materials from the forest. Examples include the Hybrit and H2GS initiatives with direct reduction of iron ore using hydrogen, Northvolt’s large investments in new battery technology and AB Volvo’s investment in fuel cell technology for heavy transportation.
Industry has a long tradition of collaboration with academia through joint projects, sharing technology platforms and laboratories, as well as recruitments. Three examples of the latter are ABB with their electrical insulator laboratory in Västerås, Testa Center (a testbed for
biological production) in Uppsala and Swerim, the steel, metal, and mining industries joint research center in Luleå and Kista.
The Swedish industry working with advanced materials has recently been investigated by Faugert & Co on behalf of The Swedish Association of Advanced Materials (SAAMS), funded by The Swedish Foundation for Strategic Research (SSF). Their findings were published in a report12. Data and insights in this section originates primarily from this report. Here, “advanced materials” are divided into nine categories: EIecŁvouics aud phoŁouics, Euevg7 veIaŁed maŁeviaIs, GIass, Havd maŁeviaIs, ComposiŁes, LighŁ meŁaIs, PoI7mevs iucIndiug biobased poI7mevs, Povons maŁeviaIs, and SpeciaI sŁeeI.
Figure 3. Total revenue of Swedish Industry with a dependence of advanced materials12.
Special steel and hard materials (primarily hard metals for metal cutting and mining) are the dominating areas for industry with roughly two thirds of the total revenue. The industries in Glass are small, only 90 MSEK 2019, but show the strongest growth since 2011 together with Energy related materials. In total, Swedish industries with a direct dependance on advanced materials have an aggregated revenue of approx. 300 BSEK. This should be compared with a total revenue of 9500 BSEK for Swedish industry (3.2% industry with advanced materials). However, the indirect coupling of advanced materials to other industry sectors should not be underestimated.
Electronics and photonics: Sweden had a significant semiconductor industry with both Ericsson and ABB, operating their own silicon foundries. During the late 1990’ and early 2000’ these foundries were closed: both Ericsson and ABB could more efficiently source their semiconductor needs from external vendors.
In the aftermath of these shutdowns several small niche companies emerged producing a wide range of semiconductor related products (sensors, lasers, RF electronics etc.) and process equipment. A brief survey has been made by Electronic Products & Systems1 identifying more than 80 companies with a total revenue exceeding 5 BSEK. Research interests from industry are in various semiconductors (Si, SiC, SiGe, GaN, etc.) but also new materials for heat transport (graphene etc.). Recent semiconductor shortages in industry have emphasized the importance of the area and the need for a national competence base.
Energy related materials: This area includes materials for batteries, fuel cells, solar cells, as well as production and handling of hydrogen. The industry in these fields is today small but shows substantial growth. Interesting examples include Northvolt that develops and produces Li-ion batteries, the Hybrit project (LKAB, SSAB, Vattenfall) using hydrogen for direct reduction of iron ore and Powercell producing fuel cells. The revenue from this industry is estimated to
3.2 BSEK in 2019. Examples of research interest from this industry relates to new battery material combinations, membranes, bipolar plates, and catalysts for fuel cells and electrolyzers, materials for storing and handling hydrogen and more efficient materials for solar cells.
Glass: Main developments in industry involve chemically hardened glass and multifunctional glass. Hardened glass is used in mobile devices, cameras, car windows etc., while multifunctional glass is used for instance in smart windows, spectacles. This industry in Sweden is quite small, approx. 90 MSEK revenue in 2019 but exhibits a fast growth. Main R&D efforts in industry are focused on controllable glass (e.g. PDLC, SPD), adaptable glass (e.g. photochromatic, thermochromic) and hardened glass.
Hard materials: Hard materials in industry consists of sintered powder metallurgical composites of tungsten carbide particles (>80 vol%) and binding materials such as cobalt. They are used in applications where strength and durability in harsh conditions and at high operating temperatures (800-1000 C) are important, e.g. in metal cutting and mining/rock drilling. Swedish industry is traditionally very strong in this field with several world leading companies,
x.x. Xxxxxxx, Epiroc and Seco Tools with revenues exceeding 85 BSEK. Examples of industrial research in hard materials include hard metals with new macro-gradients and/or self-hardening properties for rock drilling, metal cutting inserts with alternative binders and hard metal- coating properties for machining of metals, as well as new wear-resistant coating materials. In this sector (metal cutting and rock drilling) also polycrystalline diamond materials, as well as new processing techniques such as additive manufacturing of hard metals, are studied.
Composites: Composites in this context are represented by fiber-reinforced polymers where fibers are primarily made from carbon or glass. Examples of applications in industry are high performance carbon fiber composites for aeronautics and space and low-cost glass fiber composites for leisure boats. Swedish industry showed a revenue of approx. 4 BSEK in 2019. Examples of industrial research in this field involve composites with very high surface accuracy (laminar flow in aeronautics), nanomaterial reinforced composites and conductive composites.
Light metals: The most industrially relevant light metals are aluminum, magnesium and titanium and their alloys. Characteristics are light weight, high strength and stiffness often combined with good corrosive properties. Another important light metal is lithium for batteries. Swedish industry is strong in both mining, producing, and processing the required minerals for these light metals with an estimated revenue of 18 BSEK in 2019. Examples of industrial R&D in this field is concentrated to new alloys, additive manufacturing in, and reduced CO2 footprint of the production processes.
Polymers and bio-based polymers: Polymers can be divided into three areas; bulk polymers for consumer goods (e.g. bottles, clothes, plastic bags), high performance polymers for industrial use (e.g. insulators, plain bearings, implants), and bio-based polymers, where the raw materials come from bio-based processes. Swedish industry is strong in the field with a total revenue of 35 BSEK in 2019. Examples of industrial research in this field are bio-based polymers, additive manufacturing, polymers for electrical applications and recyclable polymers.
Porous materials: Porous materials are materials that contain voids and pores for various functionalities. These voids are created, by nature or artificially, using a molecular or supramolecular assembly as structure directing agent. A wide variety of materials is found in this category, ranging from synthetic zeolites, metal-organic frameworks and metal oxides to activated and synthetic carbons, as well as polymers and paper. Typical applications of porous materials include filtration or absorption of fluids and gases and catalytic conversion. Swedish industry is strong in this field with an estimated revenue of 30 BSEK in 2019. Examples of industrial research are in nanocellulose, nanopores, catalysts, and membranes.
Special steel and powder metallurgy: Special steel encompasses steel alloys designed for special purposes, e.g. stainlessness, heat resistance or with desired magnetic properties. Swedish steel industry has over the years become more and more focused on such special steel niches with considerable achievements – in many cases reaching a world leading position. Metal powder is used in a wide variety of applications, such as additive manufacturing, soldering, magnetic composites and surface treatments. The revenue from Swedish steel industry exceeds 100 BSEK in 2019 with a steady growth over the last years. Examples of large R&D efforts in this industry include the ambition to make the production process CO2-free by using hydrogen for direct reduction of the iron ore (e.g. Hybrit, H2GS), high-strength steels and high-entropy alloys.
6 WISE Faculty and Research Constellations
It is proposed that the WISE program is performed including six universities, which together form a complete and complementary knowledge base to successfully execute the core activities in research and education that is under focus in WISE. Below, a summary of the key environments are outlined:
Chalmers: Research contributes to the program areas and all methodological aspects of the WISE program, outlined in Fig. 2. Notable activities relate to materials for energy conversion and storage, and cover solar cells, molecular solar thermal, thermoelectrics, batteries, supercapacitors, fuel cells, electrolysis and catalysis. Other areas of expertise include advanced theoretical modeling, synthesis and characterization including use of large-scale synchrotron and neutron facilities. The research is carried out at the departments of chemistry and chemical engineering, physics, MC2 and IMS. Researchers active in these areas, are also supported, by
e.g. the SRA/SFOs in Materials Science, Nanoscience and Energy, and the European graphene flagship hosted by Xxxxxxxx.
KTH: Materials science is here virtually organized under the KTH Materials Platform and represents a wide spectrum of scientific areas involving more than 80 research groups and in total over 1000 researchers at different levels spread over all five schools and several departments. Much research can be linked to existing applications or industry, such as mining, electronics and forest industry. However, also studies on fundamentally new materials is pursued, involving synthesis, characterization, and theoretical modelling. The materials research can be divided into six thematic areas: polymer materials; emerging materials, materials for energy applications; sustainable materials; engineering materials; materials for information and communication technologies.
LiU: Materials science, including the perspective of sustainability involves more than 400 scientists. Thematic areas comprise theoretical modelling, synthesis and characterization (spectroscopy, microscopy) of advanced functional ceramics, inorganic and organic
semiconductors along with soft functional materials, including thin films, mixed ion-electron conductors, nanoparticles, low-dimensional materials, organic electronic and photonic materials. Activities are found in the divisions of the Laboratory of Organic Electronics, Semiconductor Materials, Thin Film Physics, Materials Design, Theoretical Physics, Electronic and Photonic Materials, Nanostructured Materials, and Mechanical Properties of Structural Materials. Application targets of the materials science of LiU includes large area energy harvesting, internet-of-things and massive scale energy storage and conversion, hard and lightweight technological materials, and high-power components. LiU is home to the SRA/SFO Advanced Functional Materials.
LU: Materials science is a strong strategic focus of LU, who also hosts XXX XX, and has decided to establish a significant part of its research and education in physics and chemistry in the immediate vicinity of MAX IV. With this major investment, LU will help realize the Swedish government’s ambition to establish a leading international centre for materials sciences in Science Village. The university’s Centre for Nanoscience (NanoLund) has a strong core competence in semiconductor and metal nanostructures and comprises about 400 scientists, including almost 150 PhD students. Application areas include sustainable information technology, energy conversion devices, safety of nanomaterials and devices for personalized medicine. LU research groups also have key competences in biomaterials, fuel cells, energy research, structural and building materials and in circular material flows.
SU: Research within Material Science at SU has a strong focus on developing new materials for a sustainable society, employing green synthesis and sustainable processing routes. Materials Chemistry and Catalysis in Organic Chemistry are two of the profile areas at SU. There is a strong expertise in polymers, porous materials, energy-related materials, and composites with focus on developing sustainable catalytic processes for organic synthesis, renewable materials, CO2 and biomass conversion and materials recycling. Studies are also done on surface reactivity relevant for catalysis to move the chemical society towards sustainable hydrogen feedstocks from fossil sources to water electrolysis. The research is found at the Departments of Materials an Environmental Chemistry, Organic Chemistry and Physics. The materials development and applications are strongly coupled to methodologic developments of advanced characterization techniques with synchrotron facilities (including ultrafast characterization of surfaces) and cutting-edge electron microscopy and diffraction.
UU: Research at Uppsala University is focused on materials for light harvesting (artificial photosynthesis and semiconducting solar cells), energy storage (batteries and metal hydrides), as well as magnetic materials for energy conversion. Expertise exists in advanced theoretical modeling, synthesis and characterization as well as development and use of large-scale facilities (e.g. Tandem lab. and MAX IV). Studies in assessing the flow of critical materials required for a sustainable energy transition are also pursued, in particular, when and why this can be a problem, and how this can be avoided through measures such as substitution and recycling. The research is found at the departments of Engineering Science, Physics, and Chemistry, all hosted at Ångström Laboratory, and at the Department of Geoscience. Curiosity driven materials science, e.g. in spintronics, that can only have impact for green technologies in a longer perspective, are also pursued in experimental and theoretical groups. Excellence markers of this activity can be identified, e.g., in that UU is the host of the flagship program Battery 2030+ and SNIC (the National Infrastructure of High-performance Computing).
At the six universities, and within the areas of materials science areas described above, in total 12 scientists have been awarded a Wallenberg Scholars, 28 scientists have been awarded a
Wallenberg Academy Fellows, and 76 scientists have been awarded an ERC starting, consolidator, advanced or synergy grants.
7 WISE in Relation to Other Program Initiatives
WISE will stand on its own regarding excellence of materials science for sustainability. However, materials science, just as science in general, will benefit from cross-disciplinary collaborations. Major excellent research programs in other areas are currently in operation in Sweden, which are financed by the KAW, as well as by other funding agencies, see Figure 4. As sustainability is critical in all aspects of society and science, and where cross-disciplinary activities can be justified by the outstanding research to be conducted, there is an opportunity for WISE to reach out to identify
interfaces for collaborations and complementary activities, see Fig. 4 (*further information can be found in appendix d). Several opportunities for joint projects are foreseen with the
Figure 4. WISE interfacing other programs initiatives.
existing KAW programs, where interfacing or significant complementing activities can be identified. For instance, in the Wallenberg Wood Science Center (WWSC) biomaterials from the forest are researched, with several activity protrusions leading to advanced materials for both consumer, technology and energy materials. Further, in SciLifeLab, within the Data Driven Life Science (DDLS) program, research is conducted with the use of the Berzelius Supercomputer initiative at NSC in Linköping, materials science relevant to green chemistry, medtech and diagnostics is also included.
For these reasons, several opportunities for joint activities with WASP, WWSC, and SciLifeLab will be justified and possible. The activities in the quantum technology program WAQCT are also relevant for WISE, specifically targeting quantum materials. RISE may emerge as a mediator of materials research along the interface between academia and industry. The national landscape of relevance to materials science also includes the VINNOVA SIPs, the well- established SRA/SFOs and different SSF initiatives in materials science and sustainability.
Further, the science generated in WISE will be evaluated for start-up and commercialization activities, which includes that the program will reach out to innovation support offices, investment funds, and for support to patent.
8 Strategic Recruitments
Sweden is at the international forefront in various research areas of importance for WISE. The profiles of the universities complement each other, which means that the strategic recruitments will evolve around different research topics, all providing a unique possibility to strengthen and renew competence.
The aim with new recruitment is to attract outstanding international candidates that increase the competence level of universities participating in WISE. There are two main strategies: Either to couple to and to strengthen existing research areas, or to establish entirely new research areas by recruiting world-class researchers. Both strategies will include recruitment of researchers at the level of Assistant or Associate Professors, targeting “rising stars”. Enrolling strategies will be flexible and allow, if needed, for the recruitment of full professors or part-
time guest professors. The successful candidates are expected to place their absolute majority of time iu vesideuce at a campus in Sweden, rather than holding honorary appointments from distance.
The budget of the packages allows for 24 strategic recruitments, four per full-member university, each comprising a recruitment package of two PhD students and two post-doctoral fellows. Moreover, the WISE environment will also provide state-of-the-art infrastructure. The recruitment process will be aligned with the strategic recruitment plans of the university, to ensure additional, long-term, faculty funding.
All partner universities will make a strategic plan for faculty recruitment within WISE. The process for recruitment (including choice of research area) will be defined by the WISE Steering Group, see chapter 12.
9 WISE Postdoc and Graduate School
The aim is to establish a joint postdoc and graduate school in 2022, which reaches full capacity in 2023, when all the first 50 PhD students and 50 postdocs have been enrolled. The research topic of each individual position will be defined through an application process, to which senior researchers of the environments described in chapter 7, will be invited to take part. Projects of relevance in this process are those outlined in Fig. 2, and all project proposals will be evaluated critically to assess scientific quality and relevance with respect to the mission of WISE. Announcements and evaluations will be coordinated and executed by the WISE Steering Group (described in Section 13). Supervision of PhD students and post-docs will be performed by the main applicant, together with co-supervisors within the hosting university, and ideally, also with co-supervision residing at universities of other nodes of the WISE program.
The recruitment process will be conducted in a careful manner, to guarantee ability and excellence of the candidates, so that they will contribute to the mission of WISE. A favorable evaluation of WISE, followed by funding from the KAW foundation would be followed by:
i. Immediate information to participating universities and relevant departments of the launch of WISE and initiate planning of initial recruitments.
ii. Announcements on known forums (e.g. the psi-k-network webpage and announcements in Nature and Science) regarding WISE and recruitment plans.
iii. This is followed by an invitation to make applications to WISE, both for PhD students and postdocs, with deadline in September 2022.
iv. The establishment of evaluation panels to support the assessment of projects.
v. Employment of successful candidates, with the ambition to reach full strength of the initial personnel during 2023.
The organization of the postdoc and graduate school will consist of a director and assisting local support at the partner universities. The school director will be responsible for operating the school, organizing seminars, and outreach activities, where the latter will involve engagement of the recruited postdocs to organize events. These events will include hosting prominent lecturers, workshops at the different partner universities, visits and training at technology and industry research platforms, as well as study visits to relevant industries and institutes.
The postdoc and graduate school will provide a multi-disciplinary academic arena for PhD students, industrial PhD students, and postdocs. The intent is to stimulate research
collaboration and networking among the young scientists in the WISE program, both within academia and industry. Further, there will be flexibility allowing double-degree programs for PhD students, involving Swedish universities beyond the partner universities as well as international universities
10 Science and Technology Platforms
Technology platforms represent important enabling facilities for the progress of science. WISE aims to fill the gap between individual instruments and large-scale national or international facilities. An inventory of existing technology platforms of relevance to sustainable materials is shown below. As noted, rather few labs of instrumentation, aiming at the synthesis or characterization of materials for sustainability, presently qualify in the platform scope window defined, and thus such resources need reinforcement driven by both the universities and WISE in concert.
Support to the individual universities may involve both the further development of existing labs and/or the investment in instrumentation for new ones. A large part of the support should be offered early in the program. Already in the first year of the program, the universities should be offered the possibility to define their needs in terms of one or a few coherent labs for sustainable materials with the ambition to serve a significant and well-defined researcher community at local, regional, or national level. A clear added value for the synthesis or
characterization of materials for sustainability represents a must requirement. Further, state- of-the-art technology platforms should also attract international young and established scientists.
XXX XX, MyFab, Tandem Lab. and supercomputer centers represent research infrastructures essential to many materials researchers at the Swedish universities. The universities should be able to apply for dedicated instrumentation at these facilities as a part of the technology platforms.
A fundamental requirement in the proposals from the universities should be a guarantee for base support to the existing or planned technology platforms (including machine workshops, lab space, electrical/gas/water connections, and research engineers/staff), so that the outcome of the KAW investment can be maximized.
11 WISE Research Arenas - WIRA
In order to assure that the mission of WISE is relevant for the challenges of our society and environment, industrial prerequisites must be considered. Those include producibility, up- scaling, tech-parameters, system design, lifetime, and stability, along with standardization, regulatory and other crucial protocols. Research arenas (WIRA) will therefore be identified and established in WISE, into which materials scientists and engineers from academia and industry jointly explore materials science for sustainability, aiming at bridging fundamental science with societal/industrial needs. A WIRA is defined as a research or development setting (the area of production and design may also apply), established in industry or in any other organization outside academia. A WIRA will serve as a laboratory or development resource where research results can be explored, evaluated and positioned in the context of industrial applications and societal needs. In addition, WIRA gives access to industrial infrastructure and knowledge, promoting a successful implementation of novel materials in technologies. WIRA will also give industry a straight avenue to express needs, identify challenges, and explore opportunities, in dialogue and collaboration with researchers at academia. In this collaboration, the aim will be to spark new scientific topics, identify new high-tech activities and establish collaboration between industry and academic partners. In addition, industry will contribute with resources and expertise to evolve science into materials technology systems for applications.
WIRA is suggested to be defined as a platform, composed of several materials science disciplines and technologies, combined with several industrial techniques and platforms, targeting one specific sustainability theme, positioned in either of the i, ii, iii or iv of Fig. 2.
WIRAs could, for example, include 1) vec7cIabIe biopIasŁics fov maunfacŁnviug iudnsŁv7,
involving synthesis, structuring, additive manufacturing processes eŁc,, having industry members from plastic, recycling and food industries onboard; 2) eIecŁvicaI euevg7 sŁovage fov mobiIiŁ7, involving theory, modelling, synthesis and structuring of novel electrode and membrane systems for green energy storage and materials for power transfer, also comprising automotive, power and grid industries; 3) euevg7-efficieuŁ iufovmaŁiou pvocessiug, involving materials enabling energy efficient data storage, handling and transfer, AI and autonomous systems (e,g, neuromorphic computing) including electronic and automotive industries; and finally 4) high-pevfovmiug gveeu sŁeeI materials, twinning theory, metallurgy, characterization, and adaptive processing (heat treatment, forming, welding, cutting, coating, etc.) with the industries of steel, construction and automotive.
12 Organization
The structure of the steering and management organization is shown in Fig. 5. The WISE Boavd is proposed to consist of a chair, a vice chair, six host university representatives (CTH, KTH, LiU, LU, SU and UU) and four industry representatives (e,g, from areas focusing on manufacturing, recycling, high-tech, energy, and/or steel). The board will have the overall responsibility for the center and will be advised by an IuŁevuaŁiouaI ScieuŁific Advisov7 Boavd (ISAB).
The SŁeeviug Xxxxx will be led by a DivecŁov and a co-DivecŁov and further will include six host university RepveseuŁaŁives. The Directors will report directly to the WISE Board. The Steering Group will perform executive tasks delegated by the board, such as decisions on the conditions and criteria of funding calls, the structure and composition of evaluation panels, appointment of the DivecŁov of Xxx XxxxxxXx XxxxxX, and funding decisions based on the recommendation by the panels. A Pvogvam Office will aid with coordination, accounting, reporting, event management and communication.
The basis for funding decisions will be prepared by evaluation panels, tentatively one panel fov SŁvaŁegic vecvniŁmeuŁ aud gnesŁ pvofessovs, one for PhD-sŁndeuŁ aud posŁdoc posiŁious and one for funding of TechuoIog7 pIaŁfovms. The panels will consist of members from the participating universities, as well as external members.
Figure 5. Structure of the organization of WISE.
13 Communication and Events
The overarching goal for communication activities will be to make WISE known to academia and industry and to serve as a source for information, internally, externally, and worldwide. More specifically, key target groups will be Swedish researchers in materials science and industry with an interest in advanced materials and international laboratories. XXXX should be expressed and recognized as the prime program in materials science for sustainability of excellence in the international community in order to attract top talents. As materials science is a key component to a future sustainable society, the program should also be known by political decision makers and relevant industry. The program will develop a webpage, publish a newsletter, publish articles, organize conferences and in general disseminate scientific discoveries. The results of WISE will actively connect to industry and to the research community.
14 Budget and Implementation
The suggested total funding for the proposed program is 2400 MSEK. There will be a degree of flexibility in the budget allowing for strategic adjustments throughout the course of the program. Overhead costs beyond what KAW typically supports will be covered by the six host universities. LiU has tentatively agreed to support the MyFab LiU-laboratories with an annual contribution of 8 MSEK/year. An overview of the main components of the WISE budget is given below.
• Strategic recruitment packages (Assistant or Assoc Professors): Total 470 MSEK.
• Recruitment of graduate students (490 MSEK) and postdoctoral researchers (335 MSEK): Total 825 MSEK.
• Guest Professors. Total 70 MSEK.
• Science and Technology Platforms incl support to MyFab (LiU) and MAX Lab. Total 605 MSEK.
• Research Arenas. Total 90 MSEK.
• Operational costs related to Management, Graduate School and Collaborations. Total 155 MSEK.
• At the disposal of the WISE Steering Group and Program Board, 2023-2032, for strategic additional initiatives. Total 185 MSEK.
Proposed total funding of WISE: 2 400 MSEK, during 2023-2032 Further details of the budget are given in appendix e.
15 Gender Balance
Overall, materials science at Swedish and international universities is currently not gender balanced. WISE will be dedicated to improving this balance by setting clear expectations for recruitments at each university and at all levels within the WISE program. Specifically, this means that recruitment of the under-represented sex shall amount to at least 50%, at each individual university. This adheres to strategic recruitments, guest professors, PhD students, as well as post-doctoral fellows.
Gender considerations will not be restricted to only recruitment. In WISE, we will guarantee that gender aspects will be important and integrated in mentorship, highlighting role models, career workshops as part of the graduate school, linking up to international networks etc.
16 Evaluation and International Benchmarking
The successful implementation and progress of the WISE program will rely on regular, as well as more comprehensive, evaluations to serve as feedback for adjustments of the program plan. On the short-term basis, it is proposed that the ISAB, primarily working for the program board, will pursue annual meetings with the program participants and summarize their conclusions in a short report with clear recommendations to the WISE Board and the Steering Group. In addition, the program participants should on an accumulated level be evaluated and internationally benchmarked. Such evaluations can include bibliometric data covering scientific publications, level of reaching out to news and popular science media, and interviews with students and post-doctoral fellows.
On a more long-term basis, WISE should also be evaluated by an independent international panel, suggested to occur after Year 4 and Year 8, and finally when approaching the end of Year
10. The results from such more extensive evaluations may be used to change the funding scheme, as well as the direction of the program for the remaining funding period.
Plans and progress will be internally distributed via the newsletter, the webpage, and conferences, highlighting breakthroughs in all areas within WISE including the advancement of technology platforms.
17 Appendices
a. Abbreviations
BSEK Billion Swedish Krona
C Celsius
CO2 Carbon Dioxide
CSD Cambridge Structural Database
DDLS Data Driven Life Science
ERC The European Research Council
GaN Gallium Nitride
H2GS H2 Green Steel
ICSD Inorganic Crystal Structure Database
IEI The Department of Management and Engineering IFM The Department of Physics, Chemistry and Biology IMS Department of Industrial and Materials Science IPCC Intergovernmental Panel on Climate Change ISAB International Scientific Advisory Board
ITN The Department of Science and Technology
KTH Royal Institute of Technology
Li-ion Lithium ion
LiU Linköping University
LU Lund University
MC2 Department of Microtechnology and Nanoscience
MSEK Million Swedish Krona
NOx Nitrogen Oxides
NSC Nationellt Superdata Centrum
PhD Doctor of Philosophy
PDLC Polymer Dispersed Liquid Crystals
R&D Research & Development
RISE The Research Institutes of Sweden
SAAMS The Swedish Association of Advanced Materials
SFO Strategiska Forsknings Områden, Strategic Research Areas
SDG Sustainable Development Goals
SIP Strategic Innovation Programs
Si Silicon
SiC Silicon Carbide SiGe Silicon Germanium SOx Sulphur Oxides
SPD Suspended Particle Device
SRA Strategic Research Areas
SSF Stiftelsen för Strategisk Forskning, Swedish Foundation for Strategic Research
SU Stockholm University
UN United Nations
UU Uppsala University
WAQCT Wallenberg Center for Quantum Technology
WASP Wallenberg AI, Autonomous Systems and Software Program
WIRA WISE Research Arenas
WISE Wallenberg Initiative Materials Science for Sustainability
WWSC Wallenberg Wood Science Centre
X-ray X-radiation
b. UN 2030 Agenda for Sustainable Development, the 17 Sustainable Development Goals (SDGs).
c. 14 of the 17 SDGs in a perspective of materials science
d. WISE in relation to other program initiatives
e. Budget
Strategic recruitments
Outstanding international researchers will be recruited at the level of Assistant or Associate Professors. If needed, recruitment will also include full professors or part-time guest professors. The budget of the packages allows for 24 strategic recruitments, four per full-member university, each comprising a recruitment package of two PhD students and two postdoctoral fellows.
Graduate students and postdoctoral researchers
PhD students and postdoctoral researchers associated with the activities within WISE will be part of a joint Postdoc and Graduate School. The Graduate School have the ambition to engage in total 130 PhD students during the program, out of which 40 should be industrial PhD students. Similarly, 130 postdoctoral researchers will be engaged, out of which 40 will be industrial postdocs.
Science and Technology Platforms
WISE aims to devote a part of the budget for investments in Science and Technology Platforms of relevance for the program to fill the gap between individual instruments and large-scale national or international facilities. Support to the individual universities may involve both the extension of existing labs and the investment in instrumentation for new ones. Universities should guarantee a base support to the existing or planned technology platforms, so that the outcome of the KAW investment can be maximized.
WISE Research Arenas-WIRA
A part of the budget will be devoted to Research Arenas-WIRA, defined as platforms where materials scientists and engineers from academia and representatives from industry meet, to jointly explore materials, aiming at bridging fundamental science with societal/industrial needs. This will be further discussed and explored with industry during the initiation of the program.
Wallenberg Initiative Materials Science and Sustainability, WISE | ||||||||||||
Budget, Mkr | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 Summa | |
…………………………………………………………………………………………………………………………………………………………………………………………………………………………….. | ||||||||||||
24 Rekryteringspaket (inklusive 44 doktorander och 44 post docs) | 4 st Chalmers, KTH, LiU, LU, SU, UU | |||||||||||
12 st | 15 | 20 | 40 | 45 | 55 | 55 | 230 | |||||
12 st | 20 | 45 | 45 | 65 | 65 | 240 | ||||||
130 doktorander varav 40 industridoktorander | ||||||||||||
50 st | 15 | 30 | 45 | 45 | 50 | 185 | ||||||
40 st | 30 | 40 | 40 | 40 | 150 | |||||||
40 st | 20 | 40 | 40 | 55 | 155 | |||||||
130 postdocs varav 40 industripostdocs | ||||||||||||
50 st | 30 | 45 | 45 | 120 | ||||||||
40 st | 35 | 35 | 35 | 105 | ||||||||
40 st | 35 | 35 | 40 | 110 | ||||||||
Forskarskola | 1 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 50 |
Nätverkande mm | 2 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 51 |
Management | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 54 |
Forskningsarenor | 10 | 10 | 10 | 20 | 20 | 20 | 90 | |||||
Gästprofessorer | 5 | 5 | 10 | 10 | 10 | 10 | 10 | 10 | 70 | |||
Plattformar | 10 | 10 | 40 | 40 | 55 | 55 | 55 | 55 | 55 | 55 | 430 | |
MyFAB LiU | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 80 | |
MAX lab | 5 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 95 | |
Fri resurs | 3 | 7 | 10 | 15 | 15 | 20 | 25 | 30 | 30 | 30 | 185 | |
………………………………………………………………………………………………………………………………………………………………………………………………………………….……... | …........... | |||||||||||
Summa | 7 | 99 | 145 | 218 | 248 | 303 | 278 | 273 | 268 | 293 | 268 | |
Ackumulerat | 106 | 251 | 469 | 717 | 1 020 | 1 298 | 1 571 | 1 839 | 2 132 | 2 400 | ||
Avsättningar | 20 | 180 | 100 | 150 | 150 | 300 | 300 | 300 | 300 | 300 | 300 | |
Ackumulerat | 200 | 300 | 450 | 600 | 900 | 1 200 | 1 500 | 1 800 | 2 100 | 2 400 | ||
Differens | 94 | 49 | -19 | -117 | -120 | -98 | -71 | -39 | -32 | 0 |
WISE
2021-10-29
Detailed budget
28
WISE 2021-10-29
18 References
(1) Xxxxxxxx, E. A.; Xxxxxx, X. X. Xxxxxx a Sustainable Materials System. Scieuce (80-, ), 2018,
360 (6396), 1396–1398. xxxxx://xxx.xxx/00.0000/xxxxxxx.xxx0000.
(2) Xxxxxxx, X.; Xxxxxx, N.; Xxxxxxx, P.; Xxxxxxx, T.; Xxxxxx, A.; Tu, Q.; Xxxxxxx, P.; Xxxxxxxx,
E. G. Global Scenarios of Resource and Emission Savings from Material Efficiency in
Residential Buildings and Cars. NaŁ,
xxxxx://xxx.xxx/00.0000/x00000-000-00000-0.
(3) Gveeu GvowŁh SŁvaŁeg7, OECD RepovŁ 202P.
Commnu,
2021, P2 (1), 5097.
(4) Intergovernmental Panel on Climate Change (IPCC) Report. Climate Change 2021: The Physical Science Basis.
(5) Xxxxxxxx, X. Sustainability of Emerging Energy and Transportation Technologies Is Impacted by the Coexistence of Minerals in Nature. Commnu, EavŁh Euvivou, 2021, 2 (1), 186. xxxxx://xxx.xxx/00.0000/x00000-000-00000-x.
(6) XxxXx, X.; Xxxxx, Y.; Xxxx, P.; Xxxx, X.; Xxxx, X.; Xxxxxxxxx, I.; Xxxx, Z.; Ma, L.; Xxxxxx, K.; Xx, T.; Xxxxx, C. D.; Xxxxxxx, R. O.; Xxxxxxx, T. P.; Xx, X. Near-Complete Depolymerization
of Polyesters with Nano-Dispersed Enzymes. NaŁnve 2021, 592 (7855), 558–563. xxxxx://xxx.xxx/00.0000/x00000-000-00000-0.
(7) Xxxxx, M.; Xxxxxxxx, V.; Xxxxxxx, E.; Xxxx, S.; Xxxxx, A.; Xxxxxxxxxx, I.; Xxxxxxxx, M.; Xxxxxxx, S.; Xxxxxxx, X. Negatively-Doped Conducting Polymers for Oxygen Reduction Reaction. 9dv, Euevg7 XxXxx, 2021, PP (3). xxxxx://xxx.xxx/00.0000/xxxx.000000000.
(8) Xxxxxxx, A. P.; Xxxxxxx, M. I.; Xxxxxx, I. A.; Xxxxxxxxxxx, V.; Xxxxxx, S. I. Conventional Superconductivity at 203 Kelvin at High Pressures in the Sulfur Hydride System. NaŁnve 2015, 525 (7567), 73–76. xxxxx://xxx.xxx/00.0000/xxxxxx00000.
(9) Xxxxxxxxx, X.; Xxxxx, N.; Xxxxx, D.; Xxxxxxx, M.; Xxxxx, I.; Xxxxxxxxx, M. H.; Xxxxxx, G.; Fuss-Xxxxxxxxx, P.; Xxxxxxx, F.; Xxxxxxxxxx, X.; Xx, H. Q.; Xxxxxxxxx, X.; Xxxxxxx, X.; Xxxxxxxxx, X. X. XxX Xxxxxxxx Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit. Scieuce (80-, ), 2013, 339 (6123), 1057–1060. xxxxx://xxx.xxx/00.0000/xxxxxxx.0000000.
(10) Xxxxxxxx, G. S.; Xxxxxxxx, R. S.; Xxxxxxxxxxxxx, G. N.; Xxxxx, S. S. D. Scientometric Analysis of Materials Science Research. Libv, XxxXxx, PvacŁ, 2019, 20P9.
(11) McKinsey & Company. The Top Tveuds iu Tech - E7ecnŁive Snmmav7; 2020.
(12) CavŁIagguiug 9v 9kŁővev Iuom 9vaucevade MaŁeviaI i Svevige, Swedish 9ssociaŁiou of 9dvauced MaŁeviaIs; 2021.
29
Signature page
This document has been electronically signed using eduSign.
Xxxxxxxx signed documents at: xxxxx://xxxxxxxxx.xxxxxxx.xxxxx.xx
Signature page
This document has been electronically signed using eduSign.
Xxxxxxxx signed documents at: xxxxx://xxxxxxxxx.xxxxxxx.xxxxx.xx