Power Frequency withstands Test Sample Clauses

Power Frequency withstands Test. If bidder fails to provide test report they have to do the type test without any price implication before delivery of equipment.
AutoNDA by SimpleDocs

Related to Power Frequency withstands Test

  • Meteorological Data Reporting Requirement (Applicable to wind generation facilities only)

  • Interconnection Customer Provided Services The services provided by Interconnection Customer under this LGIA are set forth in Article 9.6 and Article 13.5. 1. Interconnection Customer shall be paid for such services in accordance with Article 11.6.

  • Local Circuit Switching Capability, including Tandem Switching Capability 4.1.3.1 Definition 4.1.3.2 Notwithstanding BellSouth’s general duty to unbundle local circuit switching, BellSouth shall not be required to unbundle local circuit switching for <<customer_name>> when <<customer_name>> serves end-users with four (4) or more voice-grade (DS-0) equivalents or lines in locations served by BellSouth’s local circuit switches, which are in the following MSAs: Atlanta, GA; Miami, FL; Orlando, FL; Ft. Lauderdale, FL; Charlotte-Gastonia-Rock Hill, NC; Greensboro-Winston Salem-High Point, NC; Nashville, TN; and New Orleans, LA, and BellSouth has provided non-discriminatory cost based access to the Enhanced Extended Link (EEL) throughout Density Zone 1 as determined by NECA Tariff No. 4 as in effect on January 1, 1999. 4.1.3.3 In the event that <<customer_name>> orders local circuit switching for a single end user account name at a single physical end user location with four (4) or more 2-wire voice-grade loops from a BellSouth central office in an MSA listed above, BellSouth shall charge <<customer_name>> the market based rate in Exhibit C for use of the local circuit switching functionality for the affected facilities. 4.1.3.4 A featureless port is one that has a line port, switching facilities, and an interoffice port. A featured port is a port that includes all features then capable or a number of then capable features specifically requested by <<customer_name>>. Any features that are not currently then capable but are technically feasible through the switch can be requested through the NBR/BFR process. 4.1.3.5 BellSouth will provide to <<customer_name>> customized routing of calls: (i) to a requested directory assistance services platform; (ii) to an operator services platform pursuant to Section 10 of Attachment 2; (iii) for <<customer_name>>’s PIC’ed toll traffic in a two (2) PIC environment to an alternative OS/DA platform designated by <<customer_name>>. <<customer_name>> customers may use the same dialing arrangements as BellSouth customers. 4.1.3.6 Remote Switching Module functionality is included in Switching Capability. The switching capabilities used will be based on the line side features they support. 4.1.3.7 Switching Capability will also be capable of routing local, intraLATA, interLATA, and calls to international customer’s preferred carrier; call features (e.g. call forwarding) and Centrex capabilities. 4.1.3.8 Where required to do so in order to comply with an effective Commission order, BellSouth will provide to <<customer_name>> purchasing local BellSouth switching and reselling BellSouth local exchange service under Attachment 1, selective routing of calls to a requested directory assistance services platform or operator services platform. <<customer_name>> customers may use the same dialing arrangements as BellSouth customers, but obtain a <<customer_name>> branded service.

  • Subprocessing The data importer shall not subcontract any of its processing operations performed on behalf of the data exporter under the Clauses without the prior written consent of the data exporter. Where the data importer subcontracts its obligations under the Clauses, with the consent of the data exporter, it shall do so only by way of a written agreement with the subprocessor which imposes the same obligations on the subprocessor as are imposed on the data importer under the Clauses. Where the subprocessor fails to fulfil its data protection obligations under such written agreement the data importer shall remain fully liable to the data exporter for the performance of the subprocessor's obligations under such agreement.

  • Primary Frequency Response Developer shall ensure the primary frequency response capability of its Large Generating Facility by installing, maintaining, and operating a functioning governor or equivalent controls. The term “functioning governor or equivalent controls” as used herein shall mean the required hardware and/or software that provides frequency responsive real power control with the ability to sense changes in system frequency and autonomously adjust the Large Generating Facility’s real power output in accordance with the droop and deadband parameters and in the direction needed to correct frequency deviations. Developer is required to install a governor or equivalent controls with the capability of operating: (1) with a maximum 5 percent droop ± 0.036 Hz deadband; or (2) in accordance with the relevant droop, deadband, and timely and sustained response settings from an approved Applicable Reliability Standard providing for equivalent or more stringent parameters. The droop characteristic shall be: (1) based on the nameplate capacity of the Large Generating Facility, and shall be linear in the range of frequencies between 59 and 61 Hz that are outside of the deadband parameter; or (2) based on an approved Applicable Reliability Standard providing for an equivalent or more stringent parameter. The deadband parameter shall be: the range of frequencies above and below nominal (60 Hz) in which the governor or equivalent controls is not expected to adjust the Large Generating Facility’s real power output in response to frequency deviations. The deadband shall be implemented: (1) without a step to the droop curve, that is, once the frequency deviation exceeds the deadband parameter, the expected change in the Large Generating Facility’s real power output in response to frequency deviations shall start from zero and then increase (for under-frequency deviations) or decrease (for over-frequency deviations) linearly in proportion to the magnitude of the frequency deviation; or (2) in accordance with an approved Applicable Reliability Standard providing for an equivalent or more stringent parameter. Developer shall notify NYISO that the primary frequency response capability of the Large Generating Facility has been tested and confirmed during commissioning. Once Developer has synchronized the Large Generating Facility with the New York State Transmission System, Developer shall operate the Large Generating Facility consistent with the provisions specified in Articles 9.5.5.1 and 9.5.5.2 of this Agreement. The primary frequency response requirements contained herein shall apply to both synchronous and non-synchronous Large Generating Facilities.

  • System Access Control Data processing systems used to provide the Cloud Service must be prevented from being used without authorization.

  • FREQUENCY AND CAPACITY LEVELS No restriction on frequency, capacity or aircraft type.

  • Under-Frequency and Over Frequency Conditions The New York State Transmission System is designed to automatically activate a load- shed program as required by the NPCC in the event of an under-frequency system disturbance. Developer shall implement under-frequency and over-frequency relay set points for the Large Generating Facility as required by the NPCC to ensure “ride through” capability of the New York State Transmission System. Large Generating Facility response to frequency deviations of predetermined magnitudes, both under-frequency and over-frequency deviations, shall be studied and coordinated with the NYISO and Connecting Transmission Owner in accordance with Good Utility Practice. The term “ride through” as used herein shall mean the ability of a Generating Facility to stay connected to and synchronized with the New York State Transmission System during system disturbances within a range of under-frequency and over-frequency conditions, in accordance with Good Utility Practice and with NPCC Regional Reliability Reference Directory # 12, or its successor.

  • Power Factor Design Criteria (Reactive Power A wind generating plant shall maintain a power factor within the range of 0.95 leading to 0.95 lagging, measured at the Point of Interconnection as defined in this LGIA, if the ISO’s System Reliability Impact Study shows that such a requirement is necessary to ensure safety or reliability. The power factor range standards can be met using, for example without limitation, power electronics designed to supply this level of reactive capability (taking into account any limitations due to voltage level, real power output, etc.) or fixed and switched capacitors if agreed to by the Connecting Transmission Owner for the Transmission District to which the wind generating plant will be interconnected, or a combination of the two. The Developer shall not disable power factor equipment while the wind plant is in operation. Wind plants shall also be able to provide sufficient dynamic voltage support in lieu of the power system stabilizer and automatic voltage regulation at the generator excitation system if the System Reliability Impact Study shows this to be required for system safety or reliability.

  • Data Access Control Persons entitled to use data processing systems gain access only to the Personal Data that they have a right to access, and Personal Data must not be read, copied, modified or removed without authorization in the course of processing, use and storage.

Draft better contracts in just 5 minutes Get the weekly Law Insider newsletter packed with expert videos, webinars, ebooks, and more!