Common use of Concluding Remarks Clause in Contracts

Concluding Remarks. We have considered the model of information-theoretic key agreement by public discussion from correlated information. More precisely, we have compared sce- narios where the joint information is given by classical random variables and by quantum states (e.g., after execution of a quantum protocol). We proved a close connection between such classical and quantum information, namely between intrinsic information and entanglement. As an application, the derived parallels lead to an efficiently verifiable criterion for the fact that the intrinsic information vanishes. Previously, this quantity was considered to be quite hard to handle. Furthermore, we have presented examples providing evidence for the fact that the close connections between classical and quantum information extend to the level of the protocols. A consequence would be that the powerful tools and statements on the existence or rather non-existence of quantum-privacy- amplification protocols immediately carry over to the classical scenario, where it is often unclear how to show that no protocol exists. Many examples (only some of which are presented above due to space limitations) coming from measuring bound entangled states, and for which none of the known classical secret-key agreement protocols is successful, strongly suggest that bound entanglement has a classical counterpart: intrinsic information which cannot be distilled to a secret key. This stands in sharp contrast to what was previously believed about classical key agreement. We state as an open problem to rigorously prove Conjectures 1 and 2. Finally, we have proposed a measure for entanglement, based on classical information theory, with all the properties required for such a measure.

Appears in 3 contracts

Samples: Classical and Quantum Key Agreement, Classical and Quantum Key Agreement, Classical and Quantum Key Agreement

AutoNDA by SimpleDocs

Concluding Remarks. We have considered the model of information-theoretic key agreement by public discussion from correlated information. More precisely, we have compared sce- narios where the joint information is given by classical random variables and by quantum states (e.g., after execution of a quantum protocol). We proved a close connection between such classical and quantum information, namely between intrinsic information and entanglement. As an application, the derived parallels lead to an efficiently verifiable efficiently verifiable criterion for the fact that the intrinsic information vanishes. Previously, this quantity was considered to be quite hard to handle. Furthermore, we have presented examples providing evidence for the fact that the close connections between classical and quantum information extend to the level of the protocols. A consequence would be that the powerful tools and statements on the existence or rather non-existence of quantum-privacy- amplification amplification protocols immediately carry over to the classical scenario, where it is often unclear how to show that no protocol exists. Many examples (only some of which are presented above due to space limitations) coming from measuring bound entangled states, and for which none of the known classical secret-key agreement protocols is successful, strongly suggest that bound entanglement has a classical counterpart: intrinsic information which cannot be distilled to a secret key. This stands in sharp contrast to what was previously believed about classical key agreement. We state as an open problem to rigorously prove Conjectures 1 and 2. Finally, we have proposed a measure for entanglement, based on classical information theory, with all the properties required for such a measure.

Appears in 2 contracts

Samples: Classical and Quantum Key Agreement, Classical and Quantum Key Agreement

Concluding Remarks. We have considered the model of information-theoretic key agreement by public discussion from correlated information. More precisely, we have compared sce- narios com- pared scenarios where the joint information is given by classical random variables and by quantum states (e.g., after execution of a quantum protocolpro- tocol). We proved a close connection between such classical and quantum information, namely between intrinsic information and entanglement. As an application, the derived parallels lead to an efficiently verifiable criterion for the fact that the intrinsic information vanishes. Previously, this quantity was considered to be quite hard to handle. Furthermore, we have presented examples providing evidence for the fact that the close connections between classical and quantum information extend ex- tend to the level of the protocols. A consequence would be that As a consequence, the powerful tools and statements on the existence or rather non-existence of quantum-privacy- amplification protocols immediately carry over to the classical scenario, where it is often unclear how to show that no protocol exists. Many In particular, many examples (only some of which are presented above due to space limitationslimi- tations) coming from measuring bound entangled states, and for which none of the known classical secret-key agreement protocols is successful, strongly suggest that bound entanglement has a classical counterpart: intrinsic information in- formation which cannot be distilled to a secret key. This stands in sharp contrast to what was previously believed about classical key agreement. We state as an open problem to rigorously prove Conjectures 1 and 2. Finally, we have proposed a measure for entanglement, based on classical information theory, with all the properties required for such a measure. References‌‌‌ [1] X. Xxxxxxxx-Xxxxxxxxxxx and X. Xxxxx, Incoherent and coherent xxxxx- dropping in the six-state protocol of quantum cryptography, Phys. Rev. A, Vol. 59, No. 6, pp. 4238–4248, 1999.

Appears in 2 contracts

Samples: arxiv.org, citeseerx.ist.psu.edu

Concluding Remarks. We have considered the model of information-theoretic key agreement by public discussion from correlated information. More precisely, we have compared sce- narios where the joint information is given by classical random variables and by quantum states (e.g., after execution of a quantum protocol). We proved a close connection between such classical and quantum information, namely between intrinsic information and entanglement. As an application, the derived parallels lead to an efficiently verifiable e ciently veri able criterion for the fact that the intrinsic information vanishes. Previously, this quantity was considered to be quite hard to handle. Furthermore, we have presented examples providing evidence for the fact that the close connections between classical and quantum information extend to the level of the protocols. A consequence would be that the powerful tools and statements on the existence or rather non-existence of quantum-privacy- amplification ampli cation protocols immediately carry over to the classical scenario, where it is often unclear how to show that no protocol exists. Many examples (only some of which are presented above due to space limitations) coming from measuring bound entangled states, and for which none of the known classical secret-key agreement protocols is successful, strongly suggest that bound entanglement has a classical counterpart: intrinsic information which cannot be distilled to a secret key. This stands in sharp contrast to what was previously believed about classical key agreement. We state as an open problem to rigorously prove Conjectures 1 and 2. Finally, we have proposed a measure for entanglement, based on classical information theory, with all the properties required for such a measure.

Appears in 1 contract

Samples: Classical and Quantum Key Agreement

AutoNDA by SimpleDocs

Concluding Remarks. We have considered the model of information-theoretic key agreement by public discussion from correlated information. More precisely, we have compared sce- narios com- pared scenarios where the joint information is given by classical random variables and by quantum states (e.g., after execution of a quantum protocolpro- tocol). We proved a close connection between such classical and quantum information, namely between intrinsic information and entanglement. As an application, the derived parallels lead to an efficiently verifiable criterion for the fact that the intrinsic information vanishes. Previously, this quantity was considered to be quite hard to handle. Furthermore, we have presented examples providing evidence for the fact that the close connections between classical and quantum information extend ex- tend to the level of the protocols. A consequence would be that As a consequence, the powerful tools and statements on the existence or rather non-existence of quantum-privacy- amplification protocols immediately carry over to the classical scenario, where it is often unclear how to show that no protocol exists. Many In particular, many examples (only some of which are presented above due to space limitationslimi- tations) coming from measuring bound entangled states, and for which none of the known classical secret-key agreement protocols is successful, strongly suggest that bound entanglement has a classical counterpart: intrinsic information in- formation which cannot be distilled to a secret key. This stands in sharp contrast to what was previously believed about classical key agreement. We state as an open problem to rigorously prove Conjectures 1 and 2. Finally, we have proposed a measure for entanglement, based on classical information theory, with all the properties required for such a measure. References [1] X. Xxxxxxxx-Xxxxxxxxxxx and X. Xxxxx, Incoherent and coherent xxxxx- dropping in the six-state protocol of quantum cryptography, Phys. Rev. A, Vol. 59, No. 6, pp. 4238–4248, 1999.

Appears in 1 contract

Samples: Classical and Quantum Key Agreement

Draft better contracts in just 5 minutes Get the weekly Law Insider newsletter packed with expert videos, webinars, ebooks, and more!