Heating Hot Water Piping Distribution System Sample Clauses

Heating Hot Water Piping Distribution System i. The heating hot water for shall be distributed throughout the building to heating coils and reheat coils by insulated pipe. Piping that is 2-1/2 inches or smaller shall be type L copper tubing. Piping that is three inches or larger shall be schedule 40 black steel.
AutoNDA by SimpleDocs

Related to Heating Hot Water Piping Distribution System

  • Distribution System The Transmission Owner’s facilities and equipment used to transmit electricity to ultimate usage points such as homes and industries directly from nearby generators or from interchanges with higher voltage transmission networks which transport bulk power over longer distances. The voltage levels at which Distribution Systems operate differ among areas. Distribution Upgrades – The additions, modifications, and upgrades to the Transmission Owner’s Distribution System at or beyond the Point of Interconnection to facilitate interconnection of the Small Generating Facility and render the transmission service necessary to effect the Interconnection Customer’s wholesale sale of electricity in interstate commerce.

  • Two-Way Interconnection Trunks 2.4.1 Where the Parties have agreed to use Two-Way Interconnection Trunks for the exchange of traffic between Verizon and PCS, PCS shall order from Verizon, and Verizon shall provide, the Two-Way Interconnection Trunks and the Entrance Facility, on which such Trunks will ride, and transport and multiplexing, in accordance with the rates, terms and conditions set forth in this Agreement and Verizon’s applicable Tariffs. 2.4.2 Prior to ordering any Two-Way Interconnection Trunks from Verizon, PCS shall meet with Verizon to conduct a joint planning meeting (“Joint Planning Meeting”). At that Joint Planning Meeting, each Party shall provide to the other Party originating Centium Call Second (Hundred Call Second) information, and the Parties shall mutually agree on the appropriate initial number of Two-Way End Office and Tandem Interconnection Trunks and the interface specifications at the Point of Interconnection (POI). Where the Parties have agreed to convert existing One-Way Interconnection Trunks to Two-Way Interconnection Trunks, at the Joint Planning Meeting, the Parties shall also mutually agree on the conversion process and project intervals for conversion of such One-Way Interconnection Trunks to Two-Way Interconnection Trunks. 2.4.3 Two-Way Interconnection Trunks shall be from a Verizon End Office or Tandem to a mutually agreed upon POI. 2.4.4 On a semi-annual basis, PCS shall submit a good faith forecast to Verizon of the number of End Office and Tandem Two-Way Interconnection Trunks that PCS anticipates Verizon will need to provide during the ensuing two (2) year period to carry traffic from PCS to Verizon and from Verizon to PCS. PCS’s trunk forecasts shall conform to the Verizon CLEC trunk forecasting guidelines as in effect at that time. 2.4.5 The Parties shall meet (telephonically or in person) from time to time, as needed, to review data on End Office and Tandem Two-Way Interconnection Trunks to determine the need for new trunk groups and to plan any necessary changes in the number of Two-Way Interconnection Trunks. 2.4.6 Two-Way Interconnection Trunks shall have SS7 Common Channel Signaling. The Parties agree to utilize B8ZS and Extended Super Frame (ESF) DS1 facilities, where available. 2.4.7 With respect to End Office Two-Way Interconnection Trunks, both Parties shall use an economic Centium Call Second (Hundred Call Second) equal to five (5). 2.4.8 Two-Way Interconnection Trunk groups that connect to a Verizon access Tandem shall be engineered using a design blocking objective of Xxxx-Xxxxxxxxx B.005 during the average time consistent busy hour. Two-Way Interconnection Trunk groups that connect to a Verizon local Tandem shall be engineered using a design blocking objective of Xxxx-Xxxxxxxxx B.01 during the average time consistent busy hour. Verizon and PCS shall engineer Two-Way Interconnection Trunks using BOC Notes on the LEC Networks SR-TSV-002275. 2.4.9 The performance standard for final Two-Way Interconnection Trunk groups shall be that no such Interconnection Trunk group will exceed its design blocking objective (B.005 or B.01, as applicable) for three

  • One-Way Interconnection Trunks 2.3.1 Where the Parties use One-Way Interconnection Trunks for the delivery of traffic from Onvoy to Frontier, Onvoy, at Xxxxx’s own expense, shall: 2.3.1.1 provide its own facilities for delivery of the traffic to the technically feasible Point(s) of Interconnection on Frontier’s network in a LATA; and/or 2.3.1.2 obtain transport for delivery of the traffic to the technically feasible Point(s) of Interconnection on Frontier’s network in a LATA (a) from a third party, or, (b) if Frontier offers such transport pursuant to a Frontier access Tariff, from Frontier. 2.3.2 For each Tandem or End Office One-Way Interconnection Trunk group for delivery of traffic from Onvoy to Frontier with a utilization level of less than sixty percent (60%) for final trunk groups and eighty-five percent (85%) for high usage trunk groups, unless the Parties agree otherwise, Onvoy will promptly submit ASRs to disconnect a sufficient number of Interconnection Trunks to attain a utilization level of approximately sixty percent (60%) for all final trunk groups and eighty-five percent (85%) for all high usage trunk groups. In the event Onvoy fails to submit an ASR to disconnect One-Way Interconnection Trunks as required by this Section, Frontier may disconnect the excess Interconnection Trunks or bill (and Onvoy shall pay) for the excess Interconnection Trunks at the rates set forth in the Pricing Attachment. 2.3.3 Where the Parties use One-Way Interconnection Trunks for the delivery of traffic from Frontier to Onvoy, Frontier, at Frontier’s own expense, shall provide its own facilities for delivery of the traffic to the technically feasible Point(s) of Interconnection on Frontier’s network in a LATA.

  • Heating, Ventilating and Air Conditioning General Office Area: The building shall be equipped with a combination heating, ventilation and air conditioning system. The system shall have ducted supply and return air. The space above the ceiling shall not be used as a supply or return plenum. The systems shall be sized in accordance with the

  • Network Interconnection Architecture Each Party will plan, design, construct and maintain the facilities within their respective systems as are necessary and proper for the provision of traffic covered by this Agreement. These facilities include but are not limited to, a sufficient number of trunks to the point of interconnection with the tandem company, and sufficient interoffice and interexchange facilities and trunks between its own central offices to adequately handle traffic between all central offices within the service areas at a P.01 grade of service or better. The provisioning and engineering of such services and facilities will comply with generally accepted industry methods and practices, and will observe the rules and regulations of the lawfully established tariffs applicable to the services provided.

  • Television Equipment Recycling Program If this Contract is for the purchase or lease of covered television equipment, then Contractor certifies that it is compliance with Subchapter Z, Chapter 361 of the Texas Health and Safety Code related to the Television Equipment Recycling Program.

  • Unbundled Sub-Loop Feeder 2.8.4.1 Unbundled Sub-Loop Feeder (USLF) provides connectivity between BellSouth's central office and cross-box (or other access point) that serves an end user location. 2.8.4.2 USLF utilized for voice traffic can be configured as 2-wire voice (USLF-2W/V) or 4-wire voice (USLF-4W/V). 2.8.4.3 USLF utilized for digital traffic can be configured as 2-wire ISDN (USLF-2W/I); 2-wire Copper (USLF-2W/C); 4-wire Copper (USLF-4W/C); 4-wire DS0 level loop (USLF-4W/D0); or 4-wire DS1 and ISDN (USLF-4W/DI). 2.8.4.4 USLF will provide access to both the equipment and the features in the BellSouth central office and BellSouth cross box necessary to provide a 2W or 4W communications pathway from the BellSouth central office to the BellSouth cross- box. This element will allow for the connection of Lightyear’s loop distribution elements onto BellSouth's feeder system.

  • Access Toll Connecting Trunk Group Architecture 9.2.1 If CSTC chooses to subtend a Verizon access Tandem, CSTC’s NPA/NXX must be assigned by CSTC to subtend the same Verizon access Tandem that a Verizon NPA/NXX serving the same Rate Center Area subtends as identified in the LERG. 9.2.2 CSTC shall establish Access Toll Connecting Trunks pursuant to applicable access Tariffs by which it will provide Switched Exchange Access Services to Interexchange Carriers to enable such Interexchange Carriers to originate and terminate traffic to and from CSTC’s Customers. 9.2.3 The Access Toll Connecting Trunks shall be two-way trunks. Such trunks shall connect the End Office CSTC utilizes to provide Telephone Exchange Service and Switched Exchange Access to its Customers in a given LATA to the access Tandem(s) Verizon utilizes to provide Exchange Access in such LATA. 9.2.4 Access Toll Connecting Trunks shall be used solely for the transmission and routing of Exchange Access to allow CSTC’s Customers to connect to or be connected to the interexchange trunks of any Interexchange Carrier which is connected to a Verizon access Tandem.

  • Unbundled Sub-Loop Distribution Voice Grade (USLD-VG) is a copper sub- loop facility from the cross-box in the field up to and including the point of demarcation at the End User’s premises and may have load coils.

  • Cost Responsibility for Interconnection Facilities and Distribution Upgrades 4.1 Interconnection Facilities 4.2 Distribution Upgrades

Draft better contracts in just 5 minutes Get the weekly Law Insider newsletter packed with expert videos, webinars, ebooks, and more!