Loop Provisioning Involving Integrated Digital Loop Carriers 2.6.1 Where Xxxx has requested an Unbundled Loop and BellSouth uses IDLC systems to provide the local service to the End User and BellSouth has a suitable alternate facility available, BellSouth will make such alternative facilities available to Xxxx. If a suitable alternative facility is not available, then to the extent it is technically feasible, BellSouth will implement one of the following alternative arrangements for Xxxx (e.g. hairpinning): 1. Roll the circuit(s) from the IDLC to any spare copper that exists to the customer premises. 2. Roll the circuit(s) from the IDLC to an existing DLC that is not integrated. 3. If capacity exists, provide "side-door" porting through the switch. 4. If capacity exists, provide "Digital Access Cross Connect System (DACS)- door" porting (if the IDLC routes through a DACS prior to integration into the switch). 2.6.2 Arrangements 3 and 4 above require the use of a designed circuit. Therefore, non- designed Loops such as the SL1 voice grade and UCL-ND may not be ordered in these cases. 2.6.3 If no alternate facility is available, and upon request from Xxxx, and if agreed to by both Parties, BellSouth may utilize its Special Construction (SC) process to determine the additional costs required to provision facilities. Xxxx will then have the option of paying the one-time SC rates to place the Loop.
Abnormally High Tenders 36.4 An abnormally high price is one where the tender price, in combination with other constituent elements of the Tender, appears unreasonably too high to the extent that the Procuring Entity is concerned that it (the Procuring Entity) may not be getting value for money or it may be paying too high a price for the contract compared with market prices or that genuine competition between Tenderers is compromised. 36.5 In case of an abnormally high tender price, the Procuring Entity shall make a survey of the market prices, check if the estimated cost of the contract is correct and review the Tender Documents to check if the specifications, scope of work and conditions of contract are contributory to the abnormally high tenders. The Procuring Entity may also seek written clarification from the tenderer on the reason for the high tender price. The Procuring Entity shall proceed as follows: i) If the tender price is abnormally high based on wrong estimated cost of the contract, the Procuring Entity may accept or not accept the tender depending on the Procuring Entity's budget considerations. ii) If specifications, scope of work and/or conditions of contract are contributory to the abnormally high tender prices, the Procuring Entity shall reject all tenders and may retender for the contract based on revised estimates, specifications, scope of work and conditions of contract, as the case may be. 36.6 If the Procuring Entity determines that the Tender Price is abnormally too high because genuine competition between tenderers is compromised (often due to collusion, corruption or other manipulations), the Procuring Entity shall reject all Tenders and shall institute or cause relevant Government Agencies to institute an investigation on the cause of the compromise, before retendering.
Two-Way Interconnection Trunks 2.4.1 Where the Parties have agreed to use Two-Way Interconnection Trunks for the exchange of traffic between Verizon and PCS, PCS shall order from Verizon, and Verizon shall provide, the Two-Way Interconnection Trunks and the Entrance Facility, on which such Trunks will ride, and transport and multiplexing, in accordance with the rates, terms and conditions set forth in this Agreement and Verizon’s applicable Tariffs. 2.4.2 Prior to ordering any Two-Way Interconnection Trunks from Verizon, PCS shall meet with Verizon to conduct a joint planning meeting (“Joint Planning Meeting”). At that Joint Planning Meeting, each Party shall provide to the other Party originating Centium Call Second (Hundred Call Second) information, and the Parties shall mutually agree on the appropriate initial number of Two-Way End Office and Tandem Interconnection Trunks and the interface specifications at the Point of Interconnection (POI). Where the Parties have agreed to convert existing One-Way Interconnection Trunks to Two-Way Interconnection Trunks, at the Joint Planning Meeting, the Parties shall also mutually agree on the conversion process and project intervals for conversion of such One-Way Interconnection Trunks to Two-Way Interconnection Trunks. 2.4.3 Two-Way Interconnection Trunks shall be from a Verizon End Office or Tandem to a mutually agreed upon POI. 2.4.4 On a semi-annual basis, PCS shall submit a good faith forecast to Verizon of the number of End Office and Tandem Two-Way Interconnection Trunks that PCS anticipates Verizon will need to provide during the ensuing two (2) year period to carry traffic from PCS to Verizon and from Verizon to PCS. PCS’s trunk forecasts shall conform to the Verizon CLEC trunk forecasting guidelines as in effect at that time. 2.4.5 The Parties shall meet (telephonically or in person) from time to time, as needed, to review data on End Office and Tandem Two-Way Interconnection Trunks to determine the need for new trunk groups and to plan any necessary changes in the number of Two-Way Interconnection Trunks. 2.4.6 Two-Way Interconnection Trunks shall have SS7 Common Channel Signaling. The Parties agree to utilize B8ZS and Extended Super Frame (ESF) DS1 facilities, where available. 2.4.7 With respect to End Office Two-Way Interconnection Trunks, both Parties shall use an economic Centium Call Second (Hundred Call Second) equal to five (5). 2.4.8 Two-Way Interconnection Trunk groups that connect to a Verizon access Tandem shall be engineered using a design blocking objective of Xxxx-Xxxxxxxxx B.005 during the average time consistent busy hour. Two-Way Interconnection Trunk groups that connect to a Verizon local Tandem shall be engineered using a design blocking objective of Xxxx-Xxxxxxxxx B.01 during the average time consistent busy hour. Verizon and PCS shall engineer Two-Way Interconnection Trunks using BOC Notes on the LEC Networks SR-TSV-002275. 2.4.9 The performance standard for final Two-Way Interconnection Trunk groups shall be that no such Interconnection Trunk group will exceed its design blocking objective (B.005 or B.01, as applicable) for three
Inclement Weather 24.1 This Inclement Weather clause sets out the full rights, obligations and entitlements of the parties and establishes the conditions under which payment for periods of inclement weather shall be made. 24.2 This Inclement Weather clause is to be read and observed in lieu of the provisions of the award and VBIA. 24.3 Definition – inclement weather Inclement weather shall mean the existence of rain or abnormal climatic conditions (whether they be those of hail, snow, cold, high wind, severe dust storm, extreme high temperature or the like or any combination thereof) by virtue of which it is either not reasonable or not safe for employees exposed thereto to continue working whilst the same prevail.
One-Way Interconnection Trunks 2.3.1 Where the Parties use One-Way Interconnection Trunks for the delivery of traffic from Onvoy to Frontier, Onvoy, at Xxxxx’s own expense, shall: 2.3.1.1 provide its own facilities for delivery of the traffic to the technically feasible Point(s) of Interconnection on Frontier’s network in a LATA; and/or 2.3.1.2 obtain transport for delivery of the traffic to the technically feasible Point(s) of Interconnection on Frontier’s network in a LATA (a) from a third party, or, (b) if Frontier offers such transport pursuant to a Frontier access Tariff, from Frontier. 2.3.2 For each Tandem or End Office One-Way Interconnection Trunk group for delivery of traffic from Onvoy to Frontier with a utilization level of less than sixty percent (60%) for final trunk groups and eighty-five percent (85%) for high usage trunk groups, unless the Parties agree otherwise, Onvoy will promptly submit ASRs to disconnect a sufficient number of Interconnection Trunks to attain a utilization level of approximately sixty percent (60%) for all final trunk groups and eighty-five percent (85%) for all high usage trunk groups. In the event Onvoy fails to submit an ASR to disconnect One-Way Interconnection Trunks as required by this Section, Frontier may disconnect the excess Interconnection Trunks or bill (and Onvoy shall pay) for the excess Interconnection Trunks at the rates set forth in the Pricing Attachment. 2.3.3 Where the Parties use One-Way Interconnection Trunks for the delivery of traffic from Frontier to Onvoy, Frontier, at Frontier’s own expense, shall provide its own facilities for delivery of the traffic to the technically feasible Point(s) of Interconnection on Frontier’s network in a LATA.
Initiating Interconnection 4.1 If ENT determines to offer Telephone Exchange Services and to interconnect with Verizon in any LATA in which Verizon also offers Telephone Exchange Services and in which the Parties are not already interconnected pursuant to this Agreement, ENT shall provide written notice to Verizon of the need to establish Interconnection in such LATA pursuant to this Agreement. 4.2 The notice provided in Section 4.1 of this Attachment shall include (a) the initial Routing Point(s); (b) the applicable technically feasible Point(s) of Interconnection on Verizon’s network to be established in the relevant LATA in accordance with this Agreement; (c) ENT’s intended Interconnection activation date; (d) a forecast of ENT’s trunking requirements conforming to Section 14.2 of this Attachment; and (e) such other information as Verizon shall reasonably request in order to facilitate Interconnection. 4.3 The interconnection activation date in the new LATA shall be mutually agreed to by the Parties after receipt by Verizon of all necessary information as indicated above. Within ten (10) Business Days of Verizon’s receipt of ENT’s notice provided for in Section 4.1of this Attachment, Verizon and ENT shall confirm the technically feasible Point of Interconnection on Verizon’s network in the new LATA and the mutually agreed upon Interconnection activation date for the new LATA.
Wet Weather In the event of wet weather, work in the open will continue until the particular work in hand can no longer be done safely and efficiently. Whilst it is raining, employees will be required to: Continue to work under cover or relocate to alternative work under cover, on site. Obtain materials and services for employees working under cover where there is only minimal exposure to inclement weather. When required, perform emergency and safety work. In addition, work on unexpected breakdowns, which can be corrected in limited time duration. Should a portion of the project be affected by wet weather, all other employees not so affected shall continue working in accordance with award conditions, regardless that some employees may be entitled to cease work due to wet weather. If a halt to productive work occurs due to inclement weather, the parties agree that employees may be relocated to other unaffected sites. Where the above steps are not possible, affected employees may be required to attend tool box meetings, work planning sessions or skills development activities, all of which will count as productive time for payment purposes.
Reactive Power and Primary Frequency Response 9.6.1 Power Factor Design Criteria
Unbundled Digital Loops 2.3.1 BellSouth will offer Unbundled Digital Loops (UDL). UDLs are service specific, will be designed, will be provisioned with test points (where appropriate), and will come standard with OC and a DLR. The various UDLs are intended to support a specific digital transmission scheme or service. 2.3.2 BellSouth shall make available the following UDLs, subject to restrictions set forth herein:
Power Factor Design Criteria (Reactive Power A wind generating plant shall maintain a power factor within the range of 0.95 leading to 0.95 lagging, measured at the Point of Interconnection as defined in this LGIA, if the ISO’s System Reliability Impact Study shows that such a requirement is necessary to ensure safety or reliability. The power factor range standards can be met using, for example without limitation, power electronics designed to supply this level of reactive capability (taking into account any limitations due to voltage level, real power output, etc.) or fixed and switched capacitors if agreed to by the Connecting Transmission Owner for the Transmission District to which the wind generating plant will be interconnected, or a combination of the two. The Developer shall not disable power factor equipment while the wind plant is in operation. Wind plants shall also be able to provide sufficient dynamic voltage support in lieu of the power system stabilizer and automatic voltage regulation at the generator excitation system if the System Reliability Impact Study shows this to be required for system safety or reliability.