Connector J7 Sample Clauses

Connector J7. Debug only 2 5 Configuration Settings Overview 4 5.1 Acquisition Settings 4 6 Camera Discovery 5 6.1 Alternative Camera Discover Method 5 7 Advanced Configuration Options 6 7.1 Optional Supported Formats 7 7.2 Camera Passthrough Options 7 7.3 Common USB3 Vision Features 8 7.3.1 DeviceLinkThroughputLimit Feature 9
AutoNDA by SimpleDocs
Connector J7. Debug only‌ 4 4000-OEM USB Camera Bench Setup‌ • SLA-CAB-TC2USB (USB C to USB 3.0 Type-A Adapter) / camera specific USB 3.0 cable: Connects the USB-C port (J8) on the 4000-OEM to USB3 Vision cameras. • SLA-CAB-0403: Connects to J4 on 4000-OEM board. Provides an RJ45 Ethernet connection. • SLA-CAB-1504 / SLA-PWR-B12V-36W (110-250VAC input / 12VDC output): Connects to J50 on the 4000-OEM board. A green light (D1) on the 4000-OEM board indicates that all boards are powered on. An amber light (D5) verifies network connection. ��Contact surface facing down when inserting. 🛈 IMPORTANT: Disconnect all input power to OEMs and adapter boards before connecting or disconnecting cables. *SLA-CAB-MIPI-02 FFC cable must be connected correctly. See the FFC cable instructions before connecting the SLA-4000-MIPI board. **SLA-CAB-0305 can connect to SLA-CAB-0804 to facilitate a PC/USB connection to serial port 0 on the 4000-OEM. See the Serial Communications section in the EAN-Startup-Guide-4000-OEM for more information. 🗈 Additional non-USB cameras can be connected to the 4000-OEM on J6 and using the SLA-4000-MIPI board on J9. See the ICD-Adapter Boards for more information.

Related to Connector J7

  • Fabrication Making up data or results and recording or reporting them.

  • Network Interconnection Architecture Each Party will plan, design, construct and maintain the facilities within their respective systems as are necessary and proper for the provision of traffic covered by this Agreement. These facilities include but are not limited to, a sufficient number of trunks to the point of interconnection with the tandem company, and sufficient interoffice and interexchange facilities and trunks between its own central offices to adequately handle traffic between all central offices within the service areas at a P.01 grade of service or better. The provisioning and engineering of such services and facilities will comply with generally accepted industry methods and practices, and will observe the rules and regulations of the lawfully established tariffs applicable to the services provided.

  • Non-Synchronous Generation The Interconnection Customer shall design its Small Generating Facility to maintain a composite power delivery at continuous rated power output at the high-side of the generator substation at a power factor within the range of 0.95 leading to 0.95 lagging, unless the NYISO or the Transmission Owner in whose Transmission District the Small Generating Facility interconnects has established a different power factor range that applies to all similarly situated non-synchronous generators in the control area or Transmission District (as applicable) on a comparable basis, in accordance with Good Utility Practice. This power factor range standard shall be dynamic and can be met using, for example, power electronics designed to supply this level of reactive capability (taking into account any limitations due to voltage level, real power output, etc.) or fixed and switched capacitors, or a combination of the two. This requirement shall only apply to newly interconnecting non-synchronous generators that have not yet executed a Facilities Study Agreement as of September 21, 2016.

  • Synchronous Generation The Interconnection Customer shall design its Small Generating Facility to maintain a composite power delivery at continuous rated power output at the Point of Interconnection at a power factor within the range of 0.95 leading to 0.95 lagging, unless the NYISO or the Transmission Owner in whose Transmission District the Small Generating Facility interconnects has established different requirements that apply to all similarly situated generators in the New York Control Area or Transmission District (as applicable) on a comparable basis, in accordance with Good Utility Practice.

  • Loop Provisioning Involving Integrated Digital Loop Carriers 2.6.1 Where Xxxx has requested an Unbundled Loop and BellSouth uses IDLC systems to provide the local service to the End User and BellSouth has a suitable alternate facility available, BellSouth will make such alternative facilities available to Xxxx. If a suitable alternative facility is not available, then to the extent it is technically feasible, BellSouth will implement one of the following alternative arrangements for Xxxx (e.g. hairpinning): 1. Roll the circuit(s) from the IDLC to any spare copper that exists to the customer premises. 2. Roll the circuit(s) from the IDLC to an existing DLC that is not integrated. 3. If capacity exists, provide "side-door" porting through the switch. 4. If capacity exists, provide "Digital Access Cross Connect System (DACS)- door" porting (if the IDLC routes through a DACS prior to integration into the switch). 2.6.2 Arrangements 3 and 4 above require the use of a designed circuit. Therefore, non- designed Loops such as the SL1 voice grade and UCL-ND may not be ordered in these cases. 2.6.3 If no alternate facility is available, and upon request from Xxxx, and if agreed to by both Parties, BellSouth may utilize its Special Construction (SC) process to determine the additional costs required to provision facilities. Xxxx will then have the option of paying the one-time SC rates to place the Loop.

  • NETWORK INTERCONNECTION METHODS 3.1 The Interconnection provided herein may not be used solely for the purpose of originating a Party’s own interexchange traffic.

  • Interconnection Service Interconnection Service allows the Interconnection Customer to connect the Large Generating Facility to the Participating TO’s Transmission System and be eligible to deliver the Large Generating Facility’s output using the available capacity of the CAISO Controlled Grid. To the extent the Interconnection Customer wants to receive Interconnection Service, the Participating TO shall construct facilities identified in Appendices A and C that the Participating TO is responsible to construct.

  • Access Toll Connecting Trunk Group Architecture 9.2.1 If CSTC chooses to subtend a Verizon access Tandem, CSTC’s NPA/NXX must be assigned by CSTC to subtend the same Verizon access Tandem that a Verizon NPA/NXX serving the same Rate Center Area subtends as identified in the LERG. 9.2.2 CSTC shall establish Access Toll Connecting Trunks pursuant to applicable access Tariffs by which it will provide Switched Exchange Access Services to Interexchange Carriers to enable such Interexchange Carriers to originate and terminate traffic to and from CSTC’s Customers. 9.2.3 The Access Toll Connecting Trunks shall be two-way trunks. Such trunks shall connect the End Office CSTC utilizes to provide Telephone Exchange Service and Switched Exchange Access to its Customers in a given LATA to the access Tandem(s) Verizon utilizes to provide Exchange Access in such LATA. 9.2.4 Access Toll Connecting Trunks shall be used solely for the transmission and routing of Exchange Access to allow CSTC’s Customers to connect to or be connected to the interexchange trunks of any Interexchange Carrier which is connected to a Verizon access Tandem.

  • Porcupine Site Highway 11 and the City of Timmins Thunder Bay and District Toronto/York-Peel

  • Unbundled Channelization (Multiplexing) 5.7.1 To the extent NewPhone is purchasing DS1 or DS3 or STS-1 Dedicated Transport pursuant to this Agreement, Unbundled Channelization (UC) provides the optional multiplexing capability that will allow a DS1 (1.544 Mbps) or DS3 (44.736 Mbps) or STS-1 (51.84 Mbps) Network Elements to be multiplexed or channelized at a BellSouth central office. Channelization can be accomplished through the use of a multiplexer or a digital cross-connect system at the discretion of BellSouth. Once UC has been installed, NewPhone may request channel activation on a channelized facility and BellSouth shall connect the requested facilities via COCIs. The COCI must be compatible with the lower capacity facility and ordered with the lower capacity facility. This service is available as defined in NECA 4. 5.7.2 BellSouth shall make available the following channelization systems and interfaces: 5.7.2.1 DS1 Channelization System: channelizes a DS1 signal into a maximum of twenty- four (24)

Draft better contracts in just 5 minutes Get the weekly Law Insider newsletter packed with expert videos, webinars, ebooks, and more!