Access Toll Connecting Trunk Group Architecture 9.2.1 If CSTC chooses to subtend a Verizon access Tandem, CSTC’s NPA/NXX must be assigned by CSTC to subtend the same Verizon access Tandem that a Verizon NPA/NXX serving the same Rate Center Area subtends as identified in the LERG. 9.2.2 CSTC shall establish Access Toll Connecting Trunks pursuant to applicable access Tariffs by which it will provide Switched Exchange Access Services to Interexchange Carriers to enable such Interexchange Carriers to originate and terminate traffic to and from CSTC’s Customers. 9.2.3 The Access Toll Connecting Trunks shall be two-way trunks. Such trunks shall connect the End Office CSTC utilizes to provide Telephone Exchange Service and Switched Exchange Access to its Customers in a given LATA to the access Tandem(s) Verizon utilizes to provide Exchange Access in such LATA. 9.2.4 Access Toll Connecting Trunks shall be used solely for the transmission and routing of Exchange Access to allow CSTC’s Customers to connect to or be connected to the interexchange trunks of any Interexchange Carrier which is connected to a Verizon access Tandem.
Trunk Group Architecture and Traffic Routing 5.2.1 The Parties shall jointly establish Access Toll Connecting Trunks between CLEC and CBT by which they will jointly provide Tandem-transported Switched Exchange Access Services to Interexchange Carriers to enable such Interexchange Carriers to originate and terminate traffic from and to CLEC's Customers. 5.2.2 Access Toll Connecting Trunks shall be used solely for the transmission and routing of Exchange Access and non-translated Toll Free traffic (e.g., 800/888) to allow CLEC’s Customers to connect to or be connected to the interexchange trunks of any Interexchange Carrier that is connected to the CBT access Tandem. 5.2.3 The Access Toll Connecting Trunks shall be one-way or two-way trunks, as mutually agreed, connecting an End Office Switch that CLEC utilizes to provide Telephone Exchange Service and Switched Exchange Access Service in the given LATA to an access Tandem Switch CBT utilizes to provide Exchange Access in the LATA.
Power Factor Design Criteria (Reactive Power A wind generating plant shall maintain a power factor within the range of 0.95 leading to 0.95 lagging, measured at the Point of Interconnection as defined in this LGIA, if the ISO’s System Reliability Impact Study shows that such a requirement is necessary to ensure safety or reliability. The power factor range standards can be met using, for example without limitation, power electronics designed to supply this level of reactive capability (taking into account any limitations due to voltage level, real power output, etc.) or fixed and switched capacitors if agreed to by the Connecting Transmission Owner for the Transmission District to which the wind generating plant will be interconnected, or a combination of the two. The Developer shall not disable power factor equipment while the wind plant is in operation. Wind plants shall also be able to provide sufficient dynamic voltage support in lieu of the power system stabilizer and automatic voltage regulation at the generator excitation system if the System Reliability Impact Study shows this to be required for system safety or reliability.
Programming Phase Schematic Design Phase: 2.2.1.3. Design Development Phase:
Configuration Management The Contractor shall maintain a configuration management program, which shall provide for the administrative and functional systems necessary for configuration identification, control, status accounting and reporting, to ensure configuration identity with the UCEU and associated cables produced by the Contractor. The Contractor shall maintain a Contractor approved Configuration Management Plan that complies with ANSI/EIA-649 2011. Notwithstanding ANSI/EIA-649 2011, the Contractor’s configuration management program shall comply with the VLS Configuration Management Plans, TL130-AD-PLN-010-VLS, and shall comply with the following:
NETWORK INTERCONNECTION METHODS 3.1 The Interconnection provided herein may not be used solely for the purpose of originating a Party’s own interexchange traffic.
Network Interconnection Architecture Each Party will plan, design, construct and maintain the facilities within their respective systems as are necessary and proper for the provision of traffic covered by this Agreement. These facilities include but are not limited to, a sufficient number of trunks to the point of interconnection with the tandem company, and sufficient interoffice and interexchange facilities and trunks between its own central offices to adequately handle traffic between all central offices within the service areas at a P.01 grade of service or better. The provisioning and engineering of such services and facilities will comply with generally accepted industry methods and practices, and will observe the rules and regulations of the lawfully established tariffs applicable to the services provided.
Television Equipment Recycling Program If this Contract is for the purchase or lease of covered television equipment, then Contractor certifies that it is compliance with Subchapter Z, Chapter 361 of the Texas Health and Safety Code related to the Television Equipment Recycling Program.
Loop Provisioning Involving Integrated Digital Loop Carriers 2.6.1 Where Xxxx has requested an Unbundled Loop and BellSouth uses IDLC systems to provide the local service to the End User and BellSouth has a suitable alternate facility available, BellSouth will make such alternative facilities available to Xxxx. If a suitable alternative facility is not available, then to the extent it is technically feasible, BellSouth will implement one of the following alternative arrangements for Xxxx (e.g. hairpinning): 1. Roll the circuit(s) from the IDLC to any spare copper that exists to the customer premises. 2. Roll the circuit(s) from the IDLC to an existing DLC that is not integrated. 3. If capacity exists, provide "side-door" porting through the switch. 4. If capacity exists, provide "Digital Access Cross Connect System (DACS)- door" porting (if the IDLC routes through a DACS prior to integration into the switch). 2.6.2 Arrangements 3 and 4 above require the use of a designed circuit. Therefore, non- designed Loops such as the SL1 voice grade and UCL-ND may not be ordered in these cases. 2.6.3 If no alternate facility is available, and upon request from Xxxx, and if agreed to by both Parties, BellSouth may utilize its Special Construction (SC) process to determine the additional costs required to provision facilities. Xxxx will then have the option of paying the one-time SC rates to place the Loop.
Workstation/Laptop encryption All workstations and laptops that process and/or store DHCS PHI or PI must be encrypted using a FIPS 140-2 certified algorithm which is 128bit or higher, such as Advanced Encryption Standard (AES). The encryption solution must be full disk unless approved by the DHCS Information Security Office.