Theorem 2 Sample Clauses

Theorem 2. If 1 − ρ ≤ δ and ϕ(x, y, θ) is a special phase function, then Lm (ϕ, X) coincides with the class of pseudodifferential operators Lm (X). Proof. Let ϕ, ϕ1 be two special phase functions. Clearly, it suffices to verify the inclusion Lm (ϕ, X) ⊆ Lm (ϕ1, X). (2.10) First, we claim that for nearby x and y, the difference ϕ1 − ϕ can be written in Σ the form ϕ1 − ϕ = bjk ∂θj ϕ ∂θk ϕ (2.11) where bjk is positively homogeneous of degree 1 in θ. In fact, ∂θj = (xj Σ − yj) + ajk (xk − yk), where ajk are positively homogeneous of degree 0 in θ and a(x, x, θ) = 0. This can also be written in the form ∇θϕ = (I + A)(x − y), where I is the unit matrix and A is a matrix with elements positively homogeneous of degree 0 in θ, equal to 0 for x = y. Therefore for nearby x and y the matrix (I + A)—1 exists and has elements positively homogeneous of degree 0 in θ. This means that we may write Σ xj − yj = a˜jk ∂θk ϕ, (2.12) where a˜jk are positively homogeneous of degree 0 in θ. Now, using (2.7), we observe that ϕ1 − ϕ has a zero of order two on the diagonal D = {(x, y) ∈ X × X : x = y} and by Xxxxxx’x formula ϕ1 − ϕ = Σ ˜bjk(xj − yj)(xk − yk), (2.13) where ˜bjk are positively homogeneous of degree 1 in θ. In order obtain (2.11), we just need to put together (2.12) and (2.13). Now, consider the homotopy ϕt = ϕ + t(ϕt − ϕ), 0 ≤ t ≤ 1.
AutoNDA by SimpleDocs
Theorem 2. Plane wave solutions of rotational elasticity can, up to rescaling and rotation, be explicitly written down in the form (2.8.1), (2.8.19) with arbitrary nonzero p0 and p = (p1, p2, p3) determined as follows. • If v1 > 0 and v2 > 0 and v1 v2 then we have two possibilities: v1 – p = 0, 0, ±p0 (type 1 wave), or v2 v2 – p = |p0| cos ϕ, |p0| sin ϕ, 0 where ϕ ∈ R is arbitrary (type 2 wave). • If v1 > 0 and v2 > 0 and v1 = v2 then p is an arbitrary 3-vector satisfying p = |p0| . v1 • If v1 > 0 and v2 = 0 then p = 0, 0, ±p0 . • If v = 0 and v > 0 then p = |p0| cos ϕ, |p0| sin ϕ, 0 where ϕ ∈ R is 1 2
Theorem 2. In the case of a purely axial material a nonvanishing stationary spinor field is a solution of rotational elasticity if and only if it is a solution of one of the two massless Dirac equations (2.9.1).
Theorem 2. Suppose b and σ satisfy the conditions in Theorem 2.3.2 so that a unique strong solution exists to the SDE in (2.5.
Theorem 2. If the reference gas price is less than p¯χ,a, then in order to guarantee the the payment of which, noted γ¯χ,a, is a function of market carbon prices (σ) and of the selected γ¯χ,a(σ) = Γ1(σ¯ Γ2 ¯ 2 — σ) — (σ — σ)2 = —Γ1(σ¯ — σ Γ2 σ¯ — σ)2 (2.16) ) — 2 ( where Γ1 is defined by (2.14) and Γ2 by (2.15). The CCfD’s payment formula depends on electricity price parameters. However, these are linked, among other things, to the electricity production fleet, which differs from one country to another. Consequently, it is preferable to have CCfDs differentiated by country even if the hydrogen production technologies are identical from one country to another. We illustrate this point in the following section devoted to an analysis of the French and German cases.
Theorem 2 for smaller p = p(n) We first consider the case in which n—1 p n—2/3. S Sp p
Theorem 2. 2.3 for larger p = p(n) We now consider the wider range n—1 p ≤ 2n—2/3. Proof of (2.9) in Theorem 2.2.3 We have already shown that, if n—1 p n—2/3, then F ([n]p) = (1 + o(1))np holds almost surely. Therefore, it suffices to show that (2.9) holds if, for example, n—2/3/ log n ≤ p ≤ 2n—2/3. We pro- ceed as in the proof of (2.8), given in Section 2.6.1 above. We have already observed that |[n]p| = np(1 + o(1)) almost surely as long as p n—1, and therefore F ([n]p) ≤ np(1 + o(1)) almost surely in this range of p. It now suf- fices to recall that F ([n]p) ≥ |[n]p| − X and to prove that, almost surely, we have X ≤ (2/3 +o(1))np if n—2/3/ log n ≤ p ≤ 2n—2/3. But with this assumption on p, Xxxxx 2.5.4 tells us that, w.o.p., X = 1 n3p4 + o(n3p4) = 1 n3p4 + o(np) ≤ 2 + o(1) np, (2.72) as required.
AutoNDA by SimpleDocs
Theorem 2. Suppose that S(K) contains a K-line A, and let Q0 ∈ A(K). Then, for all P ∈ S(K) we have that 2P + Q0 ∈ GjS (K). Proof. Let P ∈ S(K). By the definition of GjS (K), if P ∈ A(K) there is nothing to prove. Hence, we may assume that P ∈/ A(K). Let TP S be the
Theorem 2. Every F ∈ H2−k can be written in the following way: F (z) = F +(z) + (4πy)1−x x − 1 c0(y) + F −(z), where F + and F− have Fourier expansions as follows, for some m0 ∈ Z: F +(z) = nΣ=m0 c+(n)qn, F−(τ ) = Σ c−(n)Γ(1 − k, 4πny)q−n. In the theorem, F + is called the holomorphic part of F , and (4πy)1−k c (y) + F−(τ ) is called the nonholomorphic part of F . When the nonholomorphic part is nonzero, F + is called a mock modular form.

Related to Theorem 2

  • xxx/Xxxxxx/XXXXX- 19_School_Manual_FINAL pdf -page 101-102 We will continue to use the guidelines reflected in the COVID-19 school manual.

  • Agreement Xxx 0000 The Company shall not produce iron ore under this Agreement for transportation in any calendar year in excess of the approved production limit nor shall the total number of the mine workforce exceed the approved mine workforce without the prior consent in principle of the Minister and, subject to that consent, approval of detailed proposals in regard thereto in accordance with this Clause.

  • Xxxxxxx Xxxxxxx Policy The terms of the Partnership’s xxxxxxx xxxxxxx policy with respect to Units are incorporated herein by reference.

  • Vlastnictví Zdravotnické zařízení si ponechá a bude uchovávat Zdravotní záznamy. Zdravotnické zařízení a Zkoušející převedou na Zadavatele veškerá svá práva, nároky a tituly, včetně práv duševního vlastnictví k Důvěrným informacím (ve smyslu níže uvedeném) a k jakýmkoli jiným Studijním datům a údajům.

  • Sxxxxxxx-Xxxxx Compliance As soon as it is legally required to do so, the Company shall take all actions necessary to obtain and thereafter maintain material compliance with each applicable provision of the Sxxxxxxx-Xxxxx Act of 2002 and the rules and regulations promulgated thereunder and related or similar rules and regulations promulgated by any other governmental or self-regulatory entity or agency with jurisdiction over the Company.

  • Xxxx Xxxxx Insurance (a) If an Employee is in receipt of an Incolink benefit and suffers a disability for a period of more than 14 days, they shall have access to a benefit under a policy procured by Incolink to reimburse domestic bills which the worker receives and pays during their disablement. (b) This policy will reimburse up to $250 per bill up to a maximum of $5,000 for all bills for any one period of disablement. (c) The Employer will pay a contribution on behalf of each Employee of $1.00 per week per Employee for the life of this Agreement in accordance with the relevant Incolink trust deed and/or Constitution and By-laws.

  • Litigation History There shall be no consistent history of court/arbitral award decisions against the Tenderer, in the last (Specify years). All parties to the contract shall furnish the information in the appropriate form about any litigation or arbitration resulting from contracts completed or ongoing under its execution over the year’s specified. A consistent history of awards against the Tenderer or any member of a JV may result in rejection of the tender.

  • Policy Grievance Where either Party disputes the general application, interpretation or alleged violation of an article of this Agreement, the dispute shall be discussed initially with the Employer or the Union, as the case may be, within thirty (30) days of the occurrence. Where no satisfactory agreement is reached, either Party may submit the dispute to arbitration, as set out in Article 10.

  • DUŠEVNÍ VLASTNICTVÍ a) The Institution and the Investigator acknowledge and agree that the Sponsor shall have exclusive ownership rights to all Study Data, Study results, information, improvements, developments, discoveries, inventions, work, know-how and other rights (whether or not patentable), created, developed, and/or reduced to practice as a result of or in connection with the conduct of the Study and/or the use of the Study Drug or the Confidential Information, together with all intellectual property rights (existing and future) relating thereto (“Intellectual Property”) conceived by the Institution or the Investigator or Study Personnel, solely or jointly with others as a result of work done under this Agreement, to the widest extent possible under applicable law. The Institution and the Investigator shall promptly disclose in writing to PSI and the Sponsor all Intellectual Property made or reduced to practice by the Institution, the Investigator and/or the Study Personnel related to the Study. At the Sponsor's request, the Institution and the Investigator shall cause all rights titles and interests in and to any such Intellectual Property to be assigned to the Sponsor without additional compensation and provide reasonable assistance to obtain patents, including causing the execution of any invention assignment or other documents. b) All parties to this Agreement and Sponsor shall retain all right, title and interest in any Intellectual Property that was owned by such party or Sponsor prior to or apart from the commencement of this Agreement. No a) Zdravotnické zařízení a Hlavní zkoušející uznávají a souhlasí, že Zadavatel bude mít výhradní vlastnická práva ke všem Studijním údajům, výsledkům Studie, informacím, vylepšením, na vývoj, k objevům, vynálezům, dílům, know-how a dalším právům (ať už patentovatelným či nikoli), vytvořeným, vyvinutým, a/nebo uvedeným do praxe v důsledku nebo v souvislosti s prováděním Studie, a/nebo používáním Studijního léku nebo Důvěrných informací společně s právy duševního vlastnictví (stávajícími i budoucími) s nimi souvisejícími (dále jen „Duševní vlastnictví“), které vytvořilo Zdravotnické zařízení, Hlavní zkoušející nebo Studijní personál, samostatně nebo společně s ostatními jako výsledek práce prováděné na základě této Smlouvy, a to v největším možném rozsahu povoleném příslušnými zákonnými předpisy. Zdravotnické zařízení a Hlavní zkoušející budou neprodleně písemně informovat PSI a Zadavatele o veškerém Duševním vlastnictví vytvořeném nebo uvedeném do praxe Zdravotnickým zařízením, Hlavním zkoušejícím a/nebo Studijním personálem v souvislosti se Studií. Na žádost Zadavatele zajistí Zdravotnické zařízení a Hlavní zkoušející převod veškerých práv a zájmů týkajících se Duševního vlastnictví na Zadavatele bez další odměny a poskytnou přiměřenou součinnost k získání patentu včetně zajištění podpisu dokumentů k převodu objevu nebo jiných dokumentů. b) Všechny strany této Smlouvy a Zadavatel si i nadále ponechají veškerá práva, nároky a podíly na jakémkoli Duševním vlastnictví, které daná strana nebo Zadavatel vlastnili před začátkem platnosti této Smlouvy nebo na které license grant or assignment, express or implied, by estoppel or otherwise, is intended by, or shall be inferred from, this Agreement except to the extent necessary for each party to fulfill its obligations under this Agreement or otherwise give effect to this Agreement.

  • Xxxxxxxx-Xxxxx Compliance As soon as it is legally required to do so, the Company shall take all actions necessary to obtain and thereafter maintain material compliance with each applicable provision of the Xxxxxxxx-Xxxxx Act of 2002 and the rules and regulations promulgated thereunder and related or similar rules and regulations promulgated by any other governmental or self-regulatory entity or agency with jurisdiction over the Company.

Draft better contracts in just 5 minutes Get the weekly Law Insider newsletter packed with expert videos, webinars, ebooks, and more!