Pipe System Geometry Sample Clauses

Pipe System Geometry. The principal elements in the pipe system are constant diameter pipe sections which can contain fittings such as bends, valves and compressors as shown in Figure 1. The end points of pipe sections are called nodes and are classified either as junction nodes or fixed pressure nodes. These are depicted in Figure 2 and Figure 3. fixed pressure nodes - a node in the system where the pressure is known. This is usually a connection to a storage tank or reservoir or a source or discharge point of specified pressure. Each system must have at least one fixed pressure node. A third geometric feature of pipe systems are primary loops which are described as follows: If the junctions, primary loops, and fixed pressure nodes are identified as described above the following holds for all pipe systems: p = j + ℓ + f - l (1) where p = number of pipe sections j = number of junction nodes ℓ = number of primary loops f = number of fixed pressure nodes A proper identification of pipe sections, junction nodes, fixed pressure nodes and primary loops is helpful to assure a proper system description. Equation (1) may be verified and Figure 4 illustrates this procedure. Figure 4 Sample Pipe System Demonstrating p = j + ℓ + f - 1 p (number of pipe sections) = 12 ℓ (number of primary loops) = 4 A number of example pipe systems are described in schematics shown in the EXAMPLES section. These examples are used to illustrate various points throughout this manual. For each of these examples a numbering scheme is included showing the numbering of the pipe sections, junction nodes, and the labeling of the fixed pressure nodes. The pipe and node numbers and fixed pressure node labels are automatically assigned as the systems are developed graphically in the Pipe2000 environment.
AutoNDA by SimpleDocs

Related to Pipe System Geometry

  • System Logging The system must maintain an automated audit trail which can 20 identify the user or system process which initiates a request for PHI COUNTY discloses to 21 CONTRACTOR or CONTRACTOR creates, receives, maintains, or transmits on behalf of COUNTY, 22 or which alters such PHI. The audit trail must be date and time stamped, must log both successful and 23 failed accesses, must be read only, and must be restricted to authorized users. If such PHI is stored in a 24 database, database logging functionality must be enabled. Audit trail data must be archived for at least 3 25 years after occurrence.

  • Interconnection Service Interconnection Service allows the Interconnection Customer to connect the Large Generating Facility to the Participating TO’s Transmission System and be eligible to deliver the Large Generating Facility’s output using the available capacity of the CAISO Controlled Grid. To the extent the Interconnection Customer wants to receive Interconnection Service, the Participating TO shall construct facilities identified in Appendices A and C that the Participating TO is responsible to construct.

  • Loop Provisioning Involving Integrated Digital Loop Carriers 2.6.1 Where Xxxx has requested an Unbundled Loop and BellSouth uses IDLC systems to provide the local service to the End User and BellSouth has a suitable alternate facility available, BellSouth will make such alternative facilities available to Xxxx. If a suitable alternative facility is not available, then to the extent it is technically feasible, BellSouth will implement one of the following alternative arrangements for Xxxx (e.g. hairpinning): 1. Roll the circuit(s) from the IDLC to any spare copper that exists to the customer premises. 2. Roll the circuit(s) from the IDLC to an existing DLC that is not integrated. 3. If capacity exists, provide "side-door" porting through the switch. 4. If capacity exists, provide "Digital Access Cross Connect System (DACS)- door" porting (if the IDLC routes through a DACS prior to integration into the switch). 2.6.2 Arrangements 3 and 4 above require the use of a designed circuit. Therefore, non- designed Loops such as the SL1 voice grade and UCL-ND may not be ordered in these cases. 2.6.3 If no alternate facility is available, and upon request from Xxxx, and if agreed to by both Parties, BellSouth may utilize its Special Construction (SC) process to determine the additional costs required to provision facilities. Xxxx will then have the option of paying the one-time SC rates to place the Loop.

  • One-Way Interconnection Trunks 2.3.1 Where the Parties use One-Way Interconnection Trunks for the delivery of traffic from Onvoy to Frontier, Onvoy, at Xxxxx’s own expense, shall: 2.3.1.1 provide its own facilities for delivery of the traffic to the technically feasible Point(s) of Interconnection on Frontier’s network in a LATA; and/or 2.3.1.2 obtain transport for delivery of the traffic to the technically feasible Point(s) of Interconnection on Frontier’s network in a LATA (a) from a third party, or, (b) if Frontier offers such transport pursuant to a Frontier access Tariff, from Frontier. 2.3.2 For each Tandem or End Office One-Way Interconnection Trunk group for delivery of traffic from Onvoy to Frontier with a utilization level of less than sixty percent (60%) for final trunk groups and eighty-five percent (85%) for high usage trunk groups, unless the Parties agree otherwise, Onvoy will promptly submit ASRs to disconnect a sufficient number of Interconnection Trunks to attain a utilization level of approximately sixty percent (60%) for all final trunk groups and eighty-five percent (85%) for all high usage trunk groups. In the event Onvoy fails to submit an ASR to disconnect One-Way Interconnection Trunks as required by this Section, Frontier may disconnect the excess Interconnection Trunks or bill (and Onvoy shall pay) for the excess Interconnection Trunks at the rates set forth in the Pricing Attachment. 2.3.3 Where the Parties use One-Way Interconnection Trunks for the delivery of traffic from Frontier to Onvoy, Frontier, at Frontier’s own expense, shall provide its own facilities for delivery of the traffic to the technically feasible Point(s) of Interconnection on Frontier’s network in a LATA.

  • Switching System Hierarchy and Trunking Requirements For purposes of routing ECI traffic to Verizon, the subtending arrangements between Verizon Tandem Switches and Verizon End Office Switches shall be the same as the Tandem/End Office subtending arrangements Verizon maintains for the routing of its own or other carriers’ traffic (i.e., traffic will be routed to the appropriate Verizon Tandem subtended by the terminating End Office serving the Verizon Customer). For purposes of routing Verizon traffic to ECI, the subtending arrangements between ECI Tandem Switches and ECI End Office Switches shall be the same as the Tandem/End Office subtending arrangements that ECI maintains for the routing of its own or other carriers’ traffic.

  • Drainage Systems (1) Clear culvert inlets, outlets, and sediment catching basins. (2) Maintain waterbars, drainage dips, and other water diversion measures. (3) During active use, patrol and maintain functional drainage. (4) Repair damaged culvert ends.

  • Network Interconnection Architecture Each Party will plan, design, construct and maintain the facilities within their respective systems as are necessary and proper for the provision of traffic covered by this Agreement. These facilities include but are not limited to, a sufficient number of trunks to the point of interconnection with the tandem company, and sufficient interoffice and interexchange facilities and trunks between its own central offices to adequately handle traffic between all central offices within the service areas at a P.01 grade of service or better. The provisioning and engineering of such services and facilities will comply with generally accepted industry methods and practices, and will observe the rules and regulations of the lawfully established tariffs applicable to the services provided.

  • Two-Way Interconnection Trunks 2.4.1 Where the Parties have agreed to use Two-Way Interconnection Trunks for the exchange of traffic between Verizon and PCS, PCS shall order from Verizon, and Verizon shall provide, the Two-Way Interconnection Trunks and the Entrance Facility, on which such Trunks will ride, and transport and multiplexing, in accordance with the rates, terms and conditions set forth in this Agreement and Verizon’s applicable Tariffs. 2.4.2 Prior to ordering any Two-Way Interconnection Trunks from Verizon, PCS shall meet with Verizon to conduct a joint planning meeting (“Joint Planning Meeting”). At that Joint Planning Meeting, each Party shall provide to the other Party originating Centium Call Second (Hundred Call Second) information, and the Parties shall mutually agree on the appropriate initial number of Two-Way End Office and Tandem Interconnection Trunks and the interface specifications at the Point of Interconnection (POI). Where the Parties have agreed to convert existing One-Way Interconnection Trunks to Two-Way Interconnection Trunks, at the Joint Planning Meeting, the Parties shall also mutually agree on the conversion process and project intervals for conversion of such One-Way Interconnection Trunks to Two-Way Interconnection Trunks. 2.4.3 Two-Way Interconnection Trunks shall be from a Verizon End Office or Tandem to a mutually agreed upon POI. 2.4.4 On a semi-annual basis, PCS shall submit a good faith forecast to Verizon of the number of End Office and Tandem Two-Way Interconnection Trunks that PCS anticipates Verizon will need to provide during the ensuing two (2) year period to carry traffic from PCS to Verizon and from Verizon to PCS. PCS’s trunk forecasts shall conform to the Verizon CLEC trunk forecasting guidelines as in effect at that time. 2.4.5 The Parties shall meet (telephonically or in person) from time to time, as needed, to review data on End Office and Tandem Two-Way Interconnection Trunks to determine the need for new trunk groups and to plan any necessary changes in the number of Two-Way Interconnection Trunks. 2.4.6 Two-Way Interconnection Trunks shall have SS7 Common Channel Signaling. The Parties agree to utilize B8ZS and Extended Super Frame (ESF) DS1 facilities, where available. 2.4.7 With respect to End Office Two-Way Interconnection Trunks, both Parties shall use an economic Centium Call Second (Hundred Call Second) equal to five (5). 2.4.8 Two-Way Interconnection Trunk groups that connect to a Verizon access Tandem shall be engineered using a design blocking objective of Xxxx-Xxxxxxxxx B.005 during the average time consistent busy hour. Two-Way Interconnection Trunk groups that connect to a Verizon local Tandem shall be engineered using a design blocking objective of Xxxx-Xxxxxxxxx B.01 during the average time consistent busy hour. Verizon and PCS shall engineer Two-Way Interconnection Trunks using BOC Notes on the LEC Networks SR-TSV-002275. 2.4.9 The performance standard for final Two-Way Interconnection Trunk groups shall be that no such Interconnection Trunk group will exceed its design blocking objective (B.005 or B.01, as applicable) for three

  • Interconnection 2.1 This section applies to linking with suppliers providing public telecommunications transport networks or services in order to allow the users of one supplier to communicate with users of another supplier and to access services provided by another supplier, where specific commitments are undertaken.

  • Interconnection Customer (1) Interconnection Customer shall construct and, unless otherwise indicated, shall own, the following Interconnection Facilities: None (2) In the event that, in accordance with the Interconnection Construction Service Agreement, Interconnection Customer has exercised the Option to Build, it is hereby permitted to build in accordance with and subject to the conditions and limitations set forth in that Section, the following portions of the Transmission Owner Interconnection Facilities which constitute or are part of the Customer Facility: None Ownership of the facilities built by Interconnection Customer pursuant to the Option to Build shall be as provided in the Interconnection Construction Service Agreement.

Draft better contracts in just 5 minutes Get the weekly Law Insider newsletter packed with expert videos, webinars, ebooks, and more!