Astron Sample Clauses

Astron. Soc., vol. 425, pp. 1129– 1169, 2012, 1202.0057. [128] G. Xxxxxx, X. Pajer, and D. xxx xxx Xxxxx, “Spectral distortion aniso- tropies from single-field inflation,” 2018, 1805.08775. [129] X. Xxxxx, X. Xxxx, X. Xxxxxxx, and X. Xxxxxxxx, “The imprints of pri- mordial non-gaussianities on large-scale structure: scale dependent bias and abundance of virialized objects,” Phys. Rev., vol. D77, p. 123514, 2008, 0710.4560. [130] X. Xxxx et al., “Cosmology with the SPHEREX All-Sky Spectral Sur- vey,” 2014, 1412.4872. [131] X. X. Xxxxxxx, X. X. Xxxx, X. X. Xxxxxxxxx, and T. J. L. W. Lazio, “The Square Kilometre Array,” IEEE Proceedings, vol. 97, pp. 1482–1496, Aug. 2009. [132] Y.-X. Xx and Y.-Z. Ma, “Constraints on Primordial non-Gaussianity from Future HI Intensity Mapping Experiments,” Phys. Rev., vol. D96, no. 6, p. 063525, 2017, 1701.00221. [133] X. X. Xxxxxx et al., “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett., vol. 116, no. 6, p. 061102, 2016, 1602.03837. [134] X. X. Xxxxx et al., “Gravitational-wave cosmology across 29 decades in frequency,” Phys. Rev., vol. X6, no. 1, p. 011035, 2016, 1511.05994. [135] X. X. Xxxxxxxx, X. Xxxxxxx, X. Xxxxxxx, and X. Xxxxxxxxx, “Gravitational waves from inflation,” Riv. Nuovo Cim., vol. 39, no. 9, pp. 399–495, 2016, 1605.01615. [136] X. Xxxx, X. Xxxxxx, and X. Xxxxxxxx, “Primordial Black Holes as Dark Matter,” Phys. Rev., vol. D94, no. 8, p. 083504, 2016, 1607.06077. [137] X. Xxxxxxx and X. XxXxxxxxxx, Inflation and String Theory. Cam- bridge Monographs on Mathematical Physics, Cambridge University Press, 2015, 1404.2601. [138] A. Achúcarro, V. Xxxx, X. Xxxxxxx, and X. X. Xxxxx, “Cumulative effects in inflation with ultra-light entropy modes,” JCAP, vol. 1702, no. 02, p. 013, 2017, 1607.08609. [139] A. Achúcarro, X. Xxxxxxx, X. Xxxxx, X.-X. Xxxx, and X. Xxxxxxx, “Uni- versality of multi-field α-attractors,” JCAP, vol. 1804, no. 04, p. 028, 2018, 1711.09478. [140] A. Achúcarro, V. Xxxx, and X. Xxxxxxx, “On the viability of m2φ2 and natural inflation,” JCAP, vol. 1507, p. 008, 2015, 1503.07486. [141] X. Xxxxxxx, D. xxx xxx Xxxxx, and X. Xxxxx, “Lifting Primordial Non- Gaussianity Above the Noise,” JCAP, vol. 1608, no. 08, p. 044, 2016, 1605.06426.
AutoNDA by SimpleDocs
Astron. Soc. 488 (2019) L119 [arXiv:1810.03769] [INSPIRE]. [76] Fermi-LAT collaboration, The Spectrum of the Isotropic Diffuse Gamma-Ray Emission Derived From First-Year Fermi Large Area Telescope Data, Phys. Rev. Lett. 104 (2010) 101101 [arXiv:1002.3603] [INSPIRE]. [77] X. Xxxxxx et al., The Origin of the Extragalactic Gamma-Ray Background and Implications for Dark-Matter Annihilation, Astrophys. X. Xxxx. 800 (2015) L27 [arXiv:1501.05301] [INSPIRE]. [78] X. Xx Xxxxx and X. Xxxxxx, Composition of the Fermi-LAT isotropic gamma-ray background intensity: Emission from extragalactic point sources and dark matter annihilations, Phys. Rev. D 91 (2015) 123001 [arXiv:1501.05316] [INSPIRE]. [79] X. Xxxxx Xxxxxxx et al., CRPropa 3 — a Public Astrophysical Simulation Framework for Propagating Extraterrestrial Ultra-High Energy Particles, JCAP 05 (2016) 038 [arXiv:1603.07142] [INSPIRE]. [80] X. xxx Xxxxx, X. Xxxxx Xxxxxxx and J.R. H¨orandel, Determining the fraction of cosmic-ray protons at ultrahigh energies with cosmogenic neutrinos, Phys. Rev. D 100 (2019) 021302 [arXiv:1901.01899] [INSPIRE]. [81] X. Xxx for the Xxxxxx Xxxxx collaboration, Searches for neutrino fluxes in the EeV regime with the Xxxxxx Xxxxx Observatory, in proceedings of the 35th International Cosmic Ray Conference (ICRC 2017), Busan, Korea, 12–20 July 2017, PoS(ICRC2017)972 (2018) [INSPIRE]. [82] X. Xxxxxxx and X. Xxxxxxxx, Constraints on the origin of the ultra-high energy cosmic-rays using cosmic diffuse neutrino flux limits: An analytical approach, Phys. Rev. D 85 (2012) 063002 [arXiv:1202.3522] [INSPIRE]. JCAP10(2019)022 [83] Xxxxxx Xxxxx collaboration, The Xxxxxx Xxxxx Observatory Upgrade — Preliminary Design Report, arXiv:1604.03637 [INSPIRE]. [84] X. Xxxx for the Xxxxxx Xxxxx collaboration, A large radio detector at the Xxxxxx Xxxxx Observatory — measuring the properties of cosmic rays up to the highest energies, in proceedings of the 36th International Cosmic Ray Conference (ICRC2019), Madison, WI, U.S.A., 24 July–1 August 2019, PoS(ICRC2019)395 (2019). [85] Xxxxxx Xxxxx collaboration, AugerPrime: the Xxxxxx Xxxxx Observatory Upgrade, EPJ Web Conf. 210 (2019) 06002 [arXiv:1905.04472] [INSPIRE]. X. Xxx00, X. Xxxxx00, X. Xxxxxxxx00,49, I.F.M. Xxxxxxxxxxx00, X.X. Albury12, I. Allekotte1,‌ X. Xxxxxx0,11, X. Xxxxxxx Xxxxxxxx00, X. Xxxxxxx-Xxx˜iz74, G.A. Anastasi42,43, X. Xxxxxxxxxxx00, X. Xxxxxxx0, X. Xxxxxxxx00, X. Xxxxx00, X. Xxxxxx0,28, P. Assis67, X. Xxxxx0,10, A.M. Badescu70, X. Xxxxxxxx00, X. Xxx...
Astron. ASTRON is the Netherlands Institute for Radio Astronomy, and is part of the Netherlands Organisation for Scientific Research (NWO). It provides the front-line observing capabilities of the WSRT and LOFAR radio telescopes for use by Dutch and international astronomers in a wide range of fundamental astrophysical research projects. ASTRON has a strong and broad technology development programme, encompassing both innovative instrumentation for existing telescopes and the new technologies needed for future facilities. ASTRON also conducts a vigorous programme of fundamental astronomical research. ASTRON is involved in large scale software and system development. It coordinates the EC FP7 RadioNet and FP6 SKADS programmes and participates in various other EC projects: EXPReS FP6, and PrepSKA FP7. ASTRON enjoys extensive collaborative contacts with Dutch Universities and Radio Astronomy institutes all over the world. As the lead institute on the LOFAR project, ASTRON participates in bandwidth on demand aspects in WP5 and has a key role on archives in WP8. Besides the key people listed below, important input on the eVSAG (WP3) is expected from ASTRON experts on LOFAR and VLBI science and operations. In WP6, ASTRON will integrate BoD usage with their Long-Term Archive storage. In WP8 ASTRON will lead the development of applying on-demand storage elements into the framework of long-term buffer platform for archival and data reprocessing purposes.
Astron. Astrophys., vol. 40, pp. 171–216, 2002, astro- ph/0110414. [114] X. Xxxxxxxx, Modern Cosmology. Amsterdam: Academic Press, 2003. [115] P. A. R. Ade et al., “Xxxxxx 2015 results. XX. Constraints on inflation,” [116] A. R. Xxxxxx and X. X. Xxxxx, “How long before the end of inflation were observable perturbations produced?,” Phys. Rev., vol. D68, p. 103503, 2003, astro-ph/0305263. [117] X. Xxxxxxxx, “Must cosmological perturbations remain non-adiabatic af- ter multi-field inflation?,” Phys. Rev., vol. D70, p. 083522, 2004, astro- ph/0405397. [118] P. A. R. Ade et al., “Xxxxxx 2015 results. XVII. Constraints on primordial non-Gaussianity,” Astron. Astrophys., vol. 594, p. A17, 2016, 1502.01592. [119] X. Xx and X. X. Xxxxx, “A CMB polarization primer,” New Astron., vol. 2, p. 323, 1997, astro-ph/9706147. [120] U. Seljak, “Measuring polarization in cosmic microwave background,” [121] X. Xxxxxxxxxxx and X. Xxxxxx, “An all sky analysis of polarization in the microwave background,” Phys.Rev., vol. D55, pp. 1830–1840, 1997, astro-ph/9609170. [122] X. Xxxxxxxxxxxx, X. Xxxxxxxx, and X. Xxxxxxxx, “Statistics of cos- mic microwave background polarization,” Phys.Rev., vol. D55, pp. 7368– 7388, 1997, astro-ph/9611125.
Astron. Soc. 479 (2018) L76 [arXiv:1805.01902] [INSPIRE].
Astron. Soc., 88, 1–24.
Astron. Soc., vol. 425, pp. L81–L85, 2012, 1205.3165. [294] T. Baldauf, M. Mirbabayi, M. Simonović, and M. Zaldarriaga, “LSS constraints with controlled theoretical uncertainties,” 2016, 1602.00674. [295] E. Sefusatti, M. Crocce, S. Pueblas, and R. Scoccimarro, “Cosmology and the Bispectrum,” Phys. Rev., vol. D74, p. 023522, 2006, astro- ph/0604505. [296] T. Baldauf, L. Mercolli, and M. Zaldarriaga, “Effective field theory of large scale structure at two loops: The apparent scale dependence of the speed of sound,” Phys. Rev., vol. D92, no. 12, p. 123007, 2015, 1507.02256. [297] S. Foreman, H. Perrier, and L. Senatore, “Precision Comparison of the Power Spectrum in the EFTofLSS with Simulations,” JCAP, vol. 1605, no. 05, p. 027, 2016, 1507.05326. [298] J. J. M. Carrasco, S. Foreman, D. Green, and L. Senatore, “The Effective Field Theory of Large Scale Structures at Two Loops,” JCAP, vol. 1407, p. 057, 2014, 1310.0464. [299] A. Heavens, “Statistical techniques in cosmology,” 2009, 0906.0664. [300] C. E. Powell, “Generating Realisations of Stationary Gaussian Random Fields by Circulant Embedding.” https://www.nag.co.uk/ doc/techrep/pdf/tr1_14.pdf. [301] K. S. Dawson et al., “The Baryon Oscillation Spectroscopic Survey of SDSS-III,” Astron. J., vol. 145, p. 10, 2013, 1208.0022. [302] M. Garny, T. Konstandin, R. A. Porto, and L. Sagunski, “On the Soft Limit of the Large Scale Structure Power Spectrum: UV Dependence,” JCAP, vol. 1511, no. 11, p. 032, 2015, 1508.06306. [303] E. Sefusatti and R. Scoccimarro, “Galaxy bias and halo-occupation num- bers from large-scale clustering,” Phys. Rev., vol. D71, p. 063001, 2005, astro-ph/0412626. [304] U. Seljak, “Extracting primordial non-gaussianity without cosmic vari- ance,” Phys. Rev. Lett., vol. 102, p. 021302, 2009, 0807.1770. [305] L. Verde and A. F. Heavens, “On the trispectrum as a Gaussian test for cosmology,” Astrophys. J., vol. 553, p. 14, 2001, astro-ph/0101143. [306] D. Bertolini, K. Schutz, M. P. Solon, and K. M. Zurek, “The Trispectrum in the Effective Field Theory of Large Scale Structure,” JCAP, vol. 1606, no. 06, p. 052, 2016, 1604.01770. [307] A. Cooray, “21-cm Background Anisotropies Can Discern Primordial Non-Gaussianity,” Phys. Rev. Lett., vol. 97, p. 261301, 2006, astro- ph/0610257. [308] K. Heitmann, M. White, C. Wagner, S. Habib, and D. Higdon, “The Coyote Universe I: Precision Determination of the Nonlinear Matter Po- wer Spectrum,” Astrophys. J., vol. 715, pp. 104–121, 2010, 0812.1052. [309] A. Schneider...
AutoNDA by SimpleDocs
Astron. Soc., vol. 465, p. 1454, 2017, 1606.05338. [67] X. X. Xxxxxxxxx et al., “CMB-S4 Science Book, First Edition,” 2016, 1610.02743. [68] LSST Science Collaboration, P. A. Xxxxx, X. Xxxxxxx, X. X. Xxxxxxxx, X. X. Xxxxxx, J. R. P. Xxxxx, X. Armus, X. Xxxxxx, X. X. Xxxxxxxx, X. X. Xxxxxxx, and et al., “LSST Science Book, Version 2.0,” ArXiv e-prints, Dec. 2009, 0912.0201. [69] X. Xxxxxxxx, X. Xxxxxx, X. Arduini, J. . Xxxxxxxx, X. Brinchmann, X. Xxxx, X. Xxxxxxx, X. Xxxxx, X. Xxxxx, X. Ealet, and et al., “Eu- clid Definition Study Report,” ArXiv e-prints, Oct. 2011, 1110.3193. [70] X. Xxxxxxx, “Cosmology,” xxxx://xxx.xxxxx.xxx.xx.xx/user/db275/Cosmology/Le [71] W. E. East, X. Xxxxxx, X. Xxxxx, and X. Xxxxxxxx, “Beginning inflation in an inhomogeneous universe,” JCAP, vol. 1609, no. 09, p. 010, 2016, 1511.05143. [74] X. X. Xxxxxxx and X. X. Xxxx, “Nonlinear evolution of long wave- length metric fluctuations in inflationary models,” Phys. Rev., vol. D42, pp. 3936–3962, 1990. [75] X. X. Xxxxxxxx, X. X. Xxxx, A. R. Xxxxxx, and X. X. Xxxxxx, “Recon- structing the inflation potential, in principle and in practice,” Phys. Rev., vol. D48, pp. 2529–2547, 1993, hep-ph/9303288. [76] A. R. Xxxxxx, X. Xxxxxxx, and X. X. Xxxxxx, “Formalizing the slow roll approximation in inflation,” Phys. Rev., vol. D50, pp. 7222–7232, 1994, astro-ph/9408015. [77] X. X. Xxxxxxxx, “On the Scalar Field Dynamics in a Spatially Flat Xxxxxxxx Universe,” Class. Quant. Grav., vol. 7, pp. 231–237, 1990. [78] X. X. Xxxxxx, “The Scalar field as dynamical variable in inflation,” Phys. Lett., vol. B273, pp. 42–46, 1991. [79] X. X. Xxxxxx, “New types of inflationary universe,” Phys. Rev., vol. D48, pp. 1585–1590, 1993. [80] X. X. Xxxxxx, “Exact inflationary universes with potential minima,” [81] X. X. Xxxxxxxxx, “Non-Gaussian features of primordial fluctuations in single field inflationary models,” JHEP, vol. 05, p. 013, 2003, astro- ph/0210603. [82] X. X. Xxxxxx, “Horizon crossing and inflation with large eta,” Phys. Rev., vol. D72, p. 023515, 2005, gr-qc/0503017. [83] X. X. Xxxxxxxx, X. Xxxxx, and X. X. Xxxxxx, “The Dynamics of general relativity,” Gen. Rel. Grav., vol. 40, pp. 1997–2027, 2008, gr-qc/0405109. [84] X. Xxxxxx, “Large Scale Quantum Fluctuations in the Inflationary Uni- verse,” Prog. Theor. Phys., vol. 76, p. 1036, 1986. [85] X. X. Xxxxxxxx, “Quantum Theory of Gauge Invariant Cosmological Perturbations,” Sov. Phys. JETP, vol. 67, pp. 1297–1302, 1988. [Zh. Eksp. Teor. Fiz.94N7,1(1988)]. [86] ...
Astron. Soc., 91, 937-987. Xxxxxx, X., Xxxxxxxxx, X., Xxxxxxx, X., Xxxxxxxxx, X. & Xxxxxxxxx, X., 1997. Catalog of Strong Italian Earthquakes From 461 B.C. to 1990, 973 pp., Storia Geofis. Ambiente, INGV, Rome, Italy. European-Mediterranen RCMT Catalog, xxxx://xxx.xx.xxxx.xx/RCMT. Xxxxxxxxx, X., Xxxxxxxxxx, X. & Xxxxxx, R., 1985. Fault-plane solutions and seismicity of the Italian peninsula, Tectonophysics, 117, 59-78. Italian CMT dataset, xxxx://xxx.xx.xxxx.xx/RCMT/Italydataset.html. Xxxxxxx P., Xxxxxxxx M.T., 2016. The new release of the Italian contemporary stress map, Geophysical Journal International, 205, 1525–1531, doi: 10.1093/gji/ggw100. Xxxxxxxxx, X., Xxxxxxxxx, X., Xxxxxxx, G., Xxxxxxx, X., Xxxxxxxxx, X. & Xxxxxxxx, X., 2006. The Italian CMT dataset from 1977 to the present, Phys. Earth Planet. Int., 159(3-4), 286-303, doi:10.1016/x.xxxx.2006.07.008. Quick Regional Moment Tensors, xxxx://xxxxxxxx.xx.xxxx.xx/quicks.html. Xxxxxxxx, X., Xxxxxxxx, B. & Xxxxxx, R., 1997. Spatial distribution of scalar seismic moment release in Italy (1983-1996): Seismotectonic implications for the Apennines, Xxx. Geofis., 40, 1565- 1578. TDMT-INGV, Time Domain Moment Tensor catalogue, xxxx://xxx.xx.xxxx.xx/en/tdmt. Xxxx, X.X. & Valensise, X., 1989. Fault parameters and slip distribution of the 1915, Avezzano, Italy earthquake derived from geodetic observations, Bull. Seismol. Soc. Am., 79, 690-710.
Astron. Astrophys., 1:625, 2003. Xxxx X. Xxxxxxx, Xxxxxx Xxxxxxx, Xxxx Xxxxxxx, and Xxxxxxx X. Xxxxxx. Is cosmic speed - up due to new gravitational physics? Phys. Rev., D70:043528, 2004. doi: 10.1103/PhysRevD.70.043528. Xxxxxxx Xxxxx et al. The Splashback Feature around DES Galaxy Clusters: Galaxy Density and Weak Lensing Proles. Astrophys. J., 864(1):83, 2018. doi: 10.3847/ 1538-4357/aad5e7. Xxxxxx Xxxxxxxx, Xxxxxxxx Xxxx, and Xxxxxx Xxxxxx. Halo Scale Predictions of Sym- metron Modied Gravity. JCAP, 1201:030, 2012. doi: 10.1088/1475-7516/2012/01/030. Planck collaboration. Planck 2015 results. XIV. Dark energy and modied gravity. As- tron. Astrophys., 594:A14, 2016. doi: 10.1051/0004-6361/201525814. X. Xxxxxxxxxx, X. Xxxxxxxx, and Y. M. Bahe´. Weak lensing constraints on splashback around massive clusters. MNRAS, 485(1):408–415, May 2019. doi: 10.1093/mnras/ stz404.
Draft better contracts in just 5 minutes Get the weekly Law Insider newsletter packed with expert videos, webinars, ebooks, and more!