Astron Sample Clauses

Astron. Soc. 488 (2019) L119 [arXiv:1810.03769] [INSPIRE]. [76] Fermi-LAT collaboration, The Spectrum of the Isotropic Diffuse Gamma-Ray Emission Derived From First-Year Fermi Large Area Telescope Data, Phys. Rev. Lett. 104 (2010) 101101 [arXiv:1002.3603] [INSPIRE]. [77] X. Xxxxxx et al., The Origin of the Extragalactic Gamma-Ray Background and Implications for Dark-Matter Annihilation, Astrophys. J. Lett. 800 (2015) L27 [arXiv:1501.05301] [INSPIRE]. [78] X. Xx Xxxxx and X. Xxxxxx, Composition of the Fermi-LAT isotropic gamma-ray background intensity: Emission from extragalactic point sources and dark matter annihilations, Phys. Rev. D 91 (2015) 123001 [arXiv:1501.05316] [INSPIRE]. [79] X. Xxxxx Xxxxxxx et al., CRPropa 3 — a Public Astrophysical Simulation Framework for Propagating Extraterrestrial Ultra-High Energy Particles, JCAP 05 (2016) 038 [arXiv:1603.07142] [INSPIRE]. [80] X. xxx Xxxxx, X. Xxxxx Xxxxxxx and X.X. X¨xxxxxxx, Determining the fraction of cosmic-ray protons at ultrahigh energies with cosmogenic neutrinos, Phys. Rev. D 100 (2019) 021302 [arXiv:1901.01899] [INSPIRE]. [81] E. Zas for the Xxxxxx Xxxxx collaboration, Searches for neutrino fluxes in the EeV regime with the Xxxxxx Xxxxx Observatory, in proceedings of the 35th International Cosmic Ray Conference (ICRC 2017), Busan, Korea, 12–20 July 2017, PoS(ICRC2017)972 (2018) [INSPIRE]. [82] X. Xxxxxxx and X. Xxxxxxxx, Constraints on the origin of the ultra-high energy cosmic-rays using cosmic diffuse neutrino flux limits: An analytical approach, Phys. Rev. D 85 (2012) 063002 [arXiv:1202.3522] [INSPIRE]. JCAP10(2019)022 [83] Xxxxxx Xxxxx collaboration, The Xxxxxx Xxxxx Observatory Upgrade — Preliminary Design Report, arXiv:1604.03637 [INSPIRE]. [84] B. Pont for the Xxxxxx Xxxxx collaboration, A large radio detector at the Xxxxxx Xxxxx Observatory — measuring the properties of cosmic rays up to the highest energies, in proceedings of the 36th International Cosmic Ray Conference (ICRC2019), Madison, WI, U.S.A., 24 July–1 August 2019, PoS(ICRC2019)395 (2019). [85] Xxxxxx Xxxxx collaboration, AugerPrime: the Xxxxxx Xxxxx Observatory Upgrade, EPJ Web Conf. 210 (2019) 06002 [arXiv:1905.04472] [INSPIRE]. The Xxxxxx Xxxxx collaboration A. Aab75, P. Abreu67, M. Aglietta50,49, I.F.M. Albuquerque19, X.X. Albury12, I. Allekotte1,‌ A. Almela8,11, X. Xxxxxxx Castillo63, X. Xxxxxxx-Xxx˜iz74, G.A. Anastasi42,43, L. Anchordoqui82, B. Andrada8, S. Andringa67, C. Aramo47, X. Asorey1,28, P. Assis67, G. Avila9,10, A.M. B...
AutoNDA by SimpleDocs
Astron. Soc. 479 (2018) L76 [arXiv:1805.01902] [INSPIRE].
Astron. ASTRON is the Netherlands Institute for Radio Astronomy, and is part of the Netherlands Organisation for Scientific Research (NWO). It provides the front-line observing capabilities of the WSRT and LOFAR radio telescopes for use by Dutch and international astronomers in a wide range of fundamental astrophysical research projects. ASTRON has a strong and broad technology development programme, encompassing both innovative instrumentation for existing telescopes and the new technologies needed for future facilities. ASTRON also conducts a vigorous programme of fundamental astronomical research. ASTRON is involved in large scale software and system development. It coordinates the EC FP7 RadioNet and FP6 SKADS programmes and participates in various other EC projects: EXPReS FP6, and PrepSKA FP7. ASTRON enjoys extensive collaborative contacts with Dutch Universities and Radio Astronomy institutes all over the world. As the lead institute on the LOFAR project, ASTRON participates in bandwidth on demand aspects in WP5 and has a key role on archives in WP8. Besides the key people listed below, important input on the eVSAG (WP3) is expected from ASTRON experts on LOFAR and VLBI science and operations. In WP6, ASTRON will integrate BoD usage with their Long-Term Archive storage. In WP8 ASTRON will lead the development of applying on-demand storage elements into the framework of long-term buffer platform for archival and data reprocessing purposes.
Astron. Soc., vol. 90, pp. 668–678, 1930. [10] X. xx Xxxxxx, “Xxxxxxxx’x theory of gravitation and its astronomical con- sequences,” Mon. Not. Xxx. Astron. Soc., vol. 78, pp. 3–28, 1917. [11] X. X. Xxxxxxx, “Nebulae,” Proceedings of the American Philosophical So- ciety, vol. 56, pp. 403–409, 1917. 185 [12] X. Xxxxxxxxx, “On the curvature of space,” Z. Phys., vol. 10, p. 377–386, 1922. [Gen. Rel. Grav.31,1991 (1999)]. [13] X. Xxxxxxxxx, “On the Possibility of a world with constant negative curvature of space,” Z. Phys., vol. 21, pp. 326–332, 1924. [Gen. Rel. Grav.31,2001(1999)]. [14] X. Xxxxxxxx, “A Homogeneous Universe of Constant Mass and Growing Radius Accounting for the Radial Velocity of Extragalactic Nebulae,” Annales Soc. Sci. Bruxelles A, vol. 47, pp. 49–59, 1927. [Gen. Rel. Grav.45,no.8,1635(2013)]. [15] X. X. Xxxxxxxxx, “Kinematics and World-Structure,” Astrophys. J., vol. 82, pp. 284–301, 1935. [16] X. X. Xxxxxx, “On Xxxxx’x theory of world-structure,” Proceedings of the London Mathematical Society, vol. 42, p. 90–127, 1937. [17] X. X. Xxxxxx, “Extragalactic nebulae,” Astrophys. J., vol. 64, pp. 321– 369, 1926. [18] X. X. Xxxxxxxxx, The Mathematical Theory of Relativity. 1924. [19] X. Xxxxxxxx, “Note on de sitter’s universe,” Journal of mathematics and physics, vol. 4, no. 1-4, pp. 188–192, 1925. [20] X. Xxxxxx, “A relation between distance and radial velocity among extra- galactic nebulae,” Proc. Nat. Acad. Sci., vol. 15, pp. 168–173, 1929. [21] X. Xxxxxxxx, “The expanding universe,” Gen. Rel. Grav., vol. 29, pp. 641–680, 1997. [Annales Soc. Sci. Bruxelles A53,51(1933)].
Astron. Soc., 91, 937-987. Xxxxxx, X., Xxxxxxxxx, X., Xxxxxxx, X., Xxxxxxxxx, X. & Xxxxxxxxx, X., 1997. Catalog of Strong Italian Earthquakes From 461 B.C. to 1990, 973 pp., Storia Geofis. Ambiente, INGV, Rome, Italy. European-Mediterranen RCMT Catalog, xxxx://xxx.xx.xxxx.xx/RCMT. Xxxxxxxxx, X., Xxxxxxxxxx, X. & Xxxxxx, R., 1985. Fault-plane solutions and seismicity of the Italian peninsula, Tectonophysics, 117, 59-78. Italian CMT dataset, xxxx://xxx.xx.xxxx.xx/RCMT/Italydataset.html. Xxxxxxx P., Xxxxxxxx M.T., 2016. The new release of the Italian contemporary stress map, Geophysical Journal International, 205, 1525–1531, doi: 10.1093/gji/ggw100. Xxxxxxxxx, X., Xxxxxxxxx, X., Xxxxxxx, G., Xxxxxxx, X., Xxxxxxxxx, X. & Xxxxxxxx, X., 2006. The Italian CMT dataset from 1977 to the present, Phys. Earth Planet. Int., 159(3-4), 286-303, doi:10.1016/x.xxxx.2006.07.008. Quick Regional Moment Tensors, xxxx://xxxxxxxx.xx.xxxx.xx/quicks.html. Xxxxxxxx, X., Xxxxxxxx, B. & Xxxxxx, R., 1997. Spatial distribution of scalar seismic moment release in Italy (1983-1996): Seismotectonic implications for the Apennines, Xxx. Geofis., 40, 1565- 1578. TDMT-INGV, Time Domain Moment Tensor catalogue, xxxx://xxx.xx.xxxx.xx/en/tdmt. Xxxx, X.X. & Valensise, X., 1989. Fault parameters and slip distribution of the 1915, Avezzano, Italy earthquake derived from geodetic observations, Bull. Seismol. Soc. Am., 79, 690-710.
Astron. Soc., 88, 1–24. References of Formal Inversion data Xxxxxx, X., Xxxxxxxxx, X. & Xx Xxxxxxx X., 1996. State of stress in the northern Umbria-Marche Apennines (central Italy): Inferences from microearthquake and fault kinematic analyses, Xxx. Tectonicae, 10, 80-97. Xxxxxxx, X., Xxxxxxx, X.X. & Xxxxxxxxx, C., 2003. Stress and strain tensors based on focal mechanisms in the seismotectonic framework of the Friuli- Venezia Giulia region (northeastern Italy), Bull. Seismol. Soc. Am., 93(3), 1280-1297. Caccamo, D., Xxxx, X., Xxxxx, X. & Xxxx, M., 1996. Estimates of stress directions by inversion of earthquake fault-plane solutions in Sicily, Geophys. J. Int., 125, 857-868. Xxx, X., Solarino, S., Xxx, C. & Xxxx, G., 1997. Stress tensor orientation derived from fault plane solutions in the southwestern Alps, J. Geophys. Res., 102, 8171-8185. Xxxxxxx, X. & Xxxxx, X., 2000a. Spatial variation in stresses in peninsular Italy and Sicily from background seismicity, Tectonophysics, 317(1-2), 109-124. Xxxxxxx, X. & Xxxxx, X., 2000b. Fault plane solutions of crustal earthquakes in southern Italy (1988-1995), seismotectonic implications, Xxx. Geofis., 43, 437-467. Xxxxxxx X., Xxxxxx, G.B., Xx Xxxx, P., Xx Xxxx, X., Xxxxxxxxx, X., Xxxxx, S., Xxxxxxxx, C. & Xxxxxxxx N.M., 2016. Seismic sequences and swarms in the Latium-Abruzzo-Molise Apennines (central Italy): New observations and analysis from a dense monitoring of the recent activity. Tectonophysics, 712–713, 312–329, doi:10.1016/j.tecto.2017.05.026. Montone P., Xxxxxxxx M.T., 2016. The new release of the Italian contemporary stress map, Geophysical Journal International, 205, 1525–1531, doi: 10.1093/gji/ggw100. Montone, P., Xxxxx, X., Xxxxxxxxx, C., Xxxxxxxxxx, G. & Xxxxxxxxxx, X., 1995. Evidence of active extension in Quaternary volcanoes of central Italy from breakout analysis and seismicity, Geophys. Res. Lett., 22, 1909-1912. Xxxxxxxx, X., Xxxxxx, D., Xxxxxx, X. & Xxxxxx, X., 2005. Stress directions and shearwave anisotropy: observations from local earthquakes in southeastern Sicily, Italy, Bull. seism. Soc. Am., 95(4), 1359-1374, doi:10.1785/0120040108. References of Fault Slip data Xxxxxxxxx, X., Xxxxxxxxx, P., Xxxx, G.C.P. & Xxxxxxxx, L., 1998. Surface rupture of the 1857 southern Italy earthquake, Terra Nova, 10, 206-210. Xxxxx, F.R., Xxxxx, L., Xxxxxxxx, D., ’Xxxxxxx, X. & Xxxxxxxxx, M., 1997. A major seismogenic fault in a silent area: The Castrovillari fault (southern Apennines, Italy), Geophys. J. Int., 130, 59...
Astron. Soc. 416, 2102–2107 (2011).
AutoNDA by SimpleDocs
Astron. Soc. 415, 2688–2698 (2011). 9. X. Xxxxxxx et al., Astrophys. J. 756, 111 (2012).
Astron. Soc. 462, L66 (2016).
Astron. Soc. 371, L70–L73 (2006). 25. J. Law-Xxxxx, X. XxxXxxx, X. Xxxxxxxxxx, X. Xxxxxx, X. Xxxxxxx-Xxxx, Astrophys. J. 841, 132 (2017). 26. X. Xxxx et al., Science 351, 257–260 (2016).
Time is Money Join Law Insider Premium to draft better contracts faster.