Data Analysis definition

Data Analysis. This includes a detailed discussion of the method of data evaluation, including appropriate statistical methods that will allow for the effects of the Demonstration to be isolated from other initiatives occurring in the State. The level of analysis may be at the beneficiary, provider, and program level, as appropriate, and shall include population stratifications, for further depth. Sensitivity analyses may be used when appropriate. Qualitative analysis methods may also be described, if applicable.
Data Analysis. Means and standard deviations on the domains and facet standardized T-scores were run for the three groups (see Table 1). Generalized linear mixed models were performed for the three groups of pilot training candidates on the 5 domains and 30 facets of the NEO-PI-R. Generalized linear mixed models were chosen for these analyses to account for the unequal sample sizes and unequal variances among the three groups.Bonferroni post hoc t-tests with an adjustment for multiple comparisons were conducted to identify between-group differences. A statistical significance level of p < .10 was established a priori for the post hoc t-tests. A two-tailed t-test was not considered meaningful unless (a) the comparison was statistically significant at p < .10, (b) Hedges’ g effect size was |0.38| or greater, and (c) power was 0.80 or greater. However, comparisons that were significant with a Hedges’ g effect size of |0.38| or greater, but with a power less than 0.80, were also identified. These comparisons were noted to take into account between-group differences that may be underrepresented because of the small sample size for Group 2 (n = 27).
Data Analysis means data which is the combination of all of the information warehouse data to create the central data mart. --------------------------------------------------------------------------------

Examples of Data Analysis in a sentence

  • Data Analysis After receiving the transcribed and Spanish-to-English translated audio recording from GMR Transcription Services, we conducted thematic analysis to identify distinct concepts and categories related to pros and cons of targeting Hispanic and Latino communities.

  • Data Analysis After receiving transcribed and Spanish to English translated audio recording from GMR transcriptions services, we conducted thematic analysis to identify distinct concepts and categories related to pros and cons of targeting Hispanic and Latino communities.


More Definitions of Data Analysis

Data Analysis. Means and standard errors were determined for rainbow trout fillet analysis results while means and standard deviations were determined for water sample analysis results. Comparison of the grouped RAS mean geosmin concentrations in trout flesh betweentreatments (low NO3−-N versus high NO3−-N) was performedusing the unpaired t-test (˛ = 0.05). Data analysis was generated using SigmaPlot software, Version 11.0 (Systat Software Inc., San Jose, CA, USA).
Data Analysis. Shine will refine program-wide monthly Manage By Information Reports (MBI) & quarterly Manage By Outcomes Reports (MBO). The MBO will be used during Data Days where staff will be trained to analyze their classroom data to drive infonned decision making at the classroom level. Shine will work in partnership with the New Haven Public Schools' Head Start Director and designees to facilitate Data-Driven Leadership Meetings (investing in culture of data). • Strengthening the local Partnership for Compliance and Accountability: Shine will provide onboarding training for the new Superintendent and the site Principal which may include: • Head Start Requirements and Expectations • Head Start and Shine Terminology (MBI/PIR, etc.) • Key Reports for monitoring and compliance • Understanding HS staff responsibilities in accordance to the Head Start Program Performance Standards and HS ActDevelop system of reporting incidents and licensing concerns • Develop an Action Plan for resolving and strengthening systems (Incident reporting, Incident Filing/tracking, and Incident Analysis}
Data Analysis or "analysis of data" means the collection, compilation, statistical analysis, and interpretation of data.
Data Analysis. Means and standard deviations were calculated for each of the 10 Likert-scale survey items for the 16 students in the accelerated program. The percentage of students who agreed with each item was calculated as the total percentage of students who rated the item with a 4 (slightly agree), 5 (agree), or 6 (strongly agree). A review of the responses to the 10 open ended survey questions revealed considerable redundancy and overlap among the answers. Therefore, the investigator pooled all of the responses to the ten questions and conducted a single content analysis, using an empiric-analytic inductive technique to categorize the data [25]. The content analysis technique included 1) creating a computer printout listing all participant responses for a given question, 2) segmenting each of the responses into individual thematic units, 3) reviewing all responses, 4) creating and naming categories or clusters of themes based on similarities among the data, and 5) sorting the thematic units into the categories.
Data Analysis. Means was applied to obtain the norm in describing the skill preferences as perceived by employers, the extent of skill acquisition as perceived by employees and the level of skill competence as perceived by both employers and employees for every skill category and skill area. Also, it was utilized to describe the employees’ task performance as perceived by both groups of respondents. Furthermore, Pearson product moment coefficient of correlation (r) was computed to determine the correlation of all employability skills categories and areas in two factors namely (a) skill acquisition and (b) skill competence of employees to task performance. For the purpose of interpreting the strength of relationship between factors of employability skills and task performance, Lodico, Spaulding and Voegtle’s (2006, p. 233) categorization of the size of r was used as follows: 0-0.19 (Weak Relationship), 0.20-0.34 (Slight Relationship), 0.35-0.64 (Moderately Strong Relationship), 0.65-0.84 (Strong Relationship), and 0.85 or greater (Very Strong Relationship). All statistical tests were set at .05 level of significance.
Data Analysis. Means and standard deviations of continuous variables were calculated. The accuracy of body composition measures (BMI, BFP, FMI, and FFMI) to discriminate injured from non-injured participants was evaluated using Receiver Operating Characteristic (ROC) curve analysis. The ROC curve is a plot of the sensitivity (proportion of positives that are correctly identified as such) versus specificity (proportion of negatives that are correctly identified as such) at various cut-off points. A comparison of the area under the curves (AUC) among composition measures was also used to assess their overall performance as prognostic tools of musculoskeletal injuries. The cut-off point for each composition measure was defined as the co-ordinate that had the closest value to 1 for the difference between sensitivity and specificity values. P was based on two-tailed tests and P<0.05 wasconsidered significant. All statistical analyses were conducted using MedCalc software, version 12.4.0, (MedCalc, Ostend, Belgium).
Data Analysis. Means were used for better understanding of the effects of intervention. Means for URICA stage of change outcomes , BMI outcome, and program satisfaction were computed and pre-intervention and post-intervention means were compared. Qualitative data was then reviewed for themes, suggestions, and participant feelings of overall program success.